14 research outputs found

    Chicken Embryonic-Stem Cells Are Permissive to Poxvirus Recombinant Vaccine Vectors.

    Get PDF
    The discovery of mammalian pluripotent embryonic stem cells (ESC) has revolutionised cell research and regenerative medicine. More recently discovered chicken ESC (cESC), though less intensively studied, are increasingly popular as vaccine substrates due to a dearth of avian cell lines. Information on the comparative performance of cESC with common vaccine viruses is limited. Using RNA-sequencing, we compared cESC transcriptional programmes elicited by stimulation with chicken type I interferon or infection with vaccine viruses routinely propagated in primary chicken embryo fibroblasts (CEF). We used poxviruses (fowlpox virus (FWPV) FP9, canarypox virus (CNPV), and modified vaccinia virus Ankara (MVA)) and a birnavirus (infectious bursal disease virus (IBDV) PBG98). Interferon-stimulated genes (ISGs) were induced in cESC to levels comparable to those in CEF and immortalised chicken fibroblast DF-1 cells. cESC are permissive (with distinct host transcriptional responses) to MVA, FP9, and CNPV but, surprisingly, not to PBG98. MVA, CNPV, and FP9 suppressed innate immune responses, while PBG98 induced a subset of ISGs. Dysregulation of signalling pathways (i.e., NFκB, TRAF) was observed, which might affect immune responses and viral replication. In conclusion, we show that cESC are an attractive alternative substrate to study and propagate poxvirus recombinant vaccine vectors

    NANOG Is Required for the Long-Term Establishment of Avian Somatic Reprogrammed Cells

    No full text
    Summary: Somatic reprogramming, which was first identified in rodents, remains poorly described in non-mammalian species. Here, we generated avian reprogrammed cells by reprogramming of chicken and duck primary embryonic fibroblasts. The efficient generation of long-term proliferating cells depends on the method of delivery of reprogramming factors and the addition of NANOG and LIN28 to the canonical OCT4, SOX2, KLF4, and c-MYC gene combination. The reprogrammed cells were positive for several key pluripotency-associated markers including alkaline phosphatase activity, telomerase activity, SSEA1 expression, and specific cell cycle and epigenetic markers. Upregulated endogenous pluripotency-associated genes included POU5F3 (POUV) and KLF4, whereas cells failed to upregulate NANOG and LIN28A. However, cells showed a tumorigenic propensity when injected into recipient embryos. In conclusion, although the somatic reprogramming process is active in avian primary cells, it needs to be optimized to obtain fully reprogrammed cells with similar properties to those of chicken embryonic stem cells. : In this article, the authors show that the NANOG gene plays a crucial role in the long-term establishment of avian reprogrammed cells that have some of the specific markers of stem cells but that do not present all the developmental properties of induced pluripotent stem cells such as described in mammals. Keywords: avian species, somatic reprogramming, embryonic stem cells, NANOG, pluripotency, chicken, duck, embryos, blastoderm, phylogenic compariso

    Pluripotent genes in avian stem cells

    No full text
    International audienceEmbryonic stem (ES) cells were first isolated in 1981 in the mouse from the in vitro proliferation of the inner cell mass of a 3.5 days post-coitum (dpc) blastocyst. Later on, epiblast stem cells (EpiSC) were identified from in vitro culture of the epiblast of a 6.5 dpc mouse embryo, leading to the concept of naive and primed stem cells. Among non-mammalian species, ES cells have been characterized both in birds and fish; here, we focus on cells derived from chicken and the pluripotent associated markers such as OCT4, SOX2, NANOG, and KLF, previously identified in mammalian cells. In this review, we present both published and original data regarding the involvement of those pluripotent associated genes in the ES cells and early embryo of chicken

    The selective sigma-1 receptor antagonist E-52862 attenuates neuropathic pain of different aetiology in rats

    No full text
    E-52862 is a selective σ(1)R antagonist currently undergoing phase II clinical trials for neuropathic pain and represents a potential first-in-class analgesic. Here, we investigated the effect of single and repeated administration of E-52862 on different pain-related behaviours in several neuropathic pain models in rats: mechanical allodynia in cephalic (trigeminal) neuropathic pain following chronic constriction injury of the infraorbital nerve (IoN), mechanical hyperalgesia in streptozotocin (STZ)-induced diabetic polyneuropathy, and cold allodynia in oxaliplatin (OX)-induced polyneuropathy. Mechanical hypersensitivity induced after IoN surgery or STZ administration was reduced by acute treatment with E-52862 and morphine, but not by pregabalin. In the OX model, single administration of E-52862 reversed the hypersensitivity to cold stimuli similarly to 100 mg/kg of gabapentin. Interestingly, repeated E-52862 administration twice daily over 7 days did not induce pharmacodynamic tolerance but an increased antinociceptive effect in all three models. Additionally, as shown in the STZ and OX models, repeated daily treatment with E-52862 attenuated baseline pain behaviours, which supports a sustained modifying effect on underlying pain-generating mechanisms. These preclinical findings support a role for σ(1)R in neuropathic pain and extend the potential for the use of selective σ(1)R antagonists (e.g., E-52862) to the chronic treatment of cephalic and extra-cephalic neuropathic pain

    Transcriptome analysis of chicken ES, blastodermal and germ cells reveals that chick ES cells are equivalent to mouse ES cells rather than EpiSC

    Get PDF
    Pluripotent Embryonic Stem cell (ESC) lines can be derived from a variety of sources. Mouse lines derived from the early blastocyst and from primordial germ cells (PGCs) can contribute to all somatic lineages and to the germ line, whereas cells from slightly later embryos (EpiSC) no longer contribute to the germ line. In chick, pluripotent ESCs can be obtained from PGCs and from early blastoderms. Established PGC lines and freshly isolated blastodermal cells (cBC) can contribute to both germinal and somatic lineages but established lines from the former (cESC) can only produce somatic cell types. For this reason, cESCs are often considered to be equivalent to mouse EpiSC. To define these cell types more rigorously, we have performed comparative microarray analysis to describe a transcriptomic profile specific for each cell type. This is validated by real time RT-PCR and in situ hybridisation. We find that both cES and cBC cells express classic pluripotency-related genes (including cPOUV/OCT4, NANOG, SOX2/3, KLF2 and SALL4), whereas expression of DAZL, DND1, DDX4 and PIWIL1 defines a molecular signature for germ cells. Surprisingly, contrary to the prevailing view, our results also suggest that cES cells resemble mouse ES cells more closely than mouse EpiSC

    The antimigraine 5-HT(1B/1D) receptor agonists, sumatriptan, zolmitriptan and dihydroergotamine, attenuate pain-related behaviour in a rat model of trigeminal neuropathic pain

    No full text
    1. Peripheral lesion to the trigeminal nerve may induce severe pain states. Several lines of evidence have suggested that the antimigraine effect of the triptans with 5-HT(1B/1D) receptor agonist properties may result from inhibition of nociceptive transmission in the spinal nucleus of the trigeminal nerve by these drugs. On this basis, we have assessed the potential antinociceptive effects of sumatriptan and zolmitriptan, compared to dihydroergotamine (DHE), in a rat model of trigeminal neuropathic pain. 2. Chronic constriction injury was produced by two loose ligatures of the infraorbital nerve on the right side. Responsiveness to von Frey filament stimulation of the vibrissal pad was used to evaluate allodynia. 3. Two weeks after ligatures, rats with a chronic constriction of the right infraorbital nerve displayed bilateral mechanical hyper-responsiveness to von Frey filament stimulation of the vibrissal pad with a mean threshold of 0.38±0.04 g on the injured side and of 0.43±0.04 g on the contralateral (left) side (versus ⩾12.5 g on both sides in the same rats prior to nerve constriction injury). 4. Sumatriptan at a clinically relevant dose (100 μg kg(−1), s.c.) led to a significant reduction of the mechanical allodynia-like behaviour on both the injured and the contralateral sides (peak-effects 6.3±1.1 g and 4.4±0.7 g, respectively). A more pronounced effect was obtained with zolmitriptan (100 μg kg(−1), s.c.) (peak-effects: 7.4±0.9 g and 3.2±1.3 g) whereas DHE (50–100 μg kg(−1), i.v.) was less active (peak-effect ∼1.5 g). 5. Subcutaneous pretreatment with the 5-HT(1B/1D) receptor antagonist, GR 127935 (3 mg kg(−1)), prevented the anti-allodynia-like effects of triptans and DHE. Pretreatment with the 5-HT(1A) receptor antagonist, WAY 100635 (2 mg kg(−1), s.c.), did not alter the effect of triptans but significantly enhanced that of DHE (peak effect 4.3±0.5 g). 6. In a rat model of peripheral neuropathic pain, which consisted of a unilateral loose constriction of the sciatic nerve, neither sumatriptan (50–300 μg kg(−1)) nor zolmitriptan (50–300 μg kg(−1)) modified the thresholds for paw withdrawal and vocalization in response to noxious mechanical stimulation. 7. These results support the rationale for exploring the clinical efficacy of brain penetrant 5-HT(1B/1D) receptor agonists as analgesics to reduce certain types of trigeminal neuropathic pain in humans
    corecore