20 research outputs found

    Movement-Modulation of Local Power and Phase Amplitude Coupling in Bilateral Globus Pallidus Interna in Parkinson Disease

    Get PDF
    There is converging evidence that bilateral basal ganglia motor networks jointly support normal movement behaviors including unilateral movements. The extent and manner in which these networks interact during lateralized movement remains unclear. In this study, simultaneously recorded bilateral Globus Pallidus interna (GPi) local field potentials (LFP) were examined from 19 subjects with idiopathic Parkinson disease (PD), while undergoing awake deep brain stimulation (DBS) implantation. Recordings were carried out during two behavioral states; rest and cued left hand movement (finger tapping). The state-dependent effects on α- β oscillatory power and β phase-encoded phase amplitude coupling (PAC), including symmetrical and assymetrical changes between hemispheres, were identified. Unilateral hand movement resulted in symmetrical oscillatory power suppression within bilateral GPi at α (8–12 Hz) and high β (21–35 Hz) and increase in power of high frequency oscillations (HFO, 200–300 Hz) frequency bands. Asymmetrical attenuation was also observed at both low β (13–20 Hz) and low γ (40–80 Hz) bands within the contralateral GPi (P = 0.009). In addition, unilateral movement effects on PAC were confined to the contralateral GPi with attenuation of both low β-low γ and β-HFO PAC (P < 0.05). Further analysis showed that the lateralized attenuation of low β and low γ power did not correlate with low β-low γ PAC changes. The overall coherence between bilateral GPi was not significantly altered with unilateral movement, however the preferred phase difference in the high β range increased from 0.23 (±1.31) radians during rest to 1.99 (±0.78) radians during movement execution. Together, the present results suggest that unilateral motor control involves bilateral basal ganglia networks with movement features differentially encoded by distinct frequency bands. The lateralization of low β and low γ attenuation with movement suggests that these frequency bands are specific to the motor act whereas symmetrical expression of α, high β, and HFO oscillations best correspond to motor state. The restriction of movement-related PAC modulation to the contralateral GPi indicates that cross-frequency interactions appear to be associated with lateralized movements. Despite no significant movement-related changes in the interhemispheric coherence, the increase in phase difference suggests that the communication between bilateral GPi is altered with unilateral movement

    Image_4_Modulation of Spectral Representation and Connectivity Patterns in Response to Visual Narrative in the Human Brain.TIF

    No full text
    The regional brain networks and the underlying neurophysiological mechanisms subserving the cognition of visual narrative in humans have largely been studied with non-invasive brain recording. In this study, we specifically investigated how regional and cross-regional cortical activities support visual narrative interpretation using intracranial stereotactic electroencephalograms recordings from thirteen human subjects (6 females, and 7 males). Widely distributed recording sites across the brain were sampled while subjects were explicitly instructed to observe images from fables presented in “sequential” order, and a set of images drawn from multiple fables presented in “scrambled” order. Broadband activity mainly within the frontal and temporal lobes were found to encode if a presented image is part of a visual narrative (sequential) or random image set (scrambled). Moreover, the temporal lobe exhibits strong activation in response to visual narratives while the frontal lobe is more engaged when contextually novel stimuli are presented. We also investigated the dynamics of interregional interactions between visual narratives and contextually novel series of images. Interestingly, the interregional connectivity is also altered between sequential and scrambled sequences. Together, these results suggest that both changes in regional neuronal activity and cross-regional interactions subserve visual narrative and contextual novelty processing.</p

    Image_6_Modulation of Spectral Representation and Connectivity Patterns in Response to Visual Narrative in the Human Brain.TIF

    No full text
    The regional brain networks and the underlying neurophysiological mechanisms subserving the cognition of visual narrative in humans have largely been studied with non-invasive brain recording. In this study, we specifically investigated how regional and cross-regional cortical activities support visual narrative interpretation using intracranial stereotactic electroencephalograms recordings from thirteen human subjects (6 females, and 7 males). Widely distributed recording sites across the brain were sampled while subjects were explicitly instructed to observe images from fables presented in “sequential” order, and a set of images drawn from multiple fables presented in “scrambled” order. Broadband activity mainly within the frontal and temporal lobes were found to encode if a presented image is part of a visual narrative (sequential) or random image set (scrambled). Moreover, the temporal lobe exhibits strong activation in response to visual narratives while the frontal lobe is more engaged when contextually novel stimuli are presented. We also investigated the dynamics of interregional interactions between visual narratives and contextually novel series of images. Interestingly, the interregional connectivity is also altered between sequential and scrambled sequences. Together, these results suggest that both changes in regional neuronal activity and cross-regional interactions subserve visual narrative and contextual novelty processing.</p

    Propofol-induced Changes in α-β Sensorimotor Cortical Connectivity

    No full text
    BackgroundAnesthetics are believed to alter functional connectivity across brain regions. However, network-level analyses of anesthesia, particularly in humans, are sparse. The authors hypothesized that propofol-induced loss of consciousness results in functional disconnection of human sensorimotor cortices underlying the loss of volitional motor responses.MethodsThe authors recorded local field potentials from sensorimotor cortices in patients with Parkinson disease (N = 12) and essential tremor (N = 7) undergoing deep brain stimulation surgery, before and after propofol-induced loss of consciousness. Local spectral power and interregional connectivity (coherence and imaginary coherence) were evaluated separately across conditions for the two populations.ResultsPropofol anesthesia caused power increases for frequencies between 2 and 100 Hz across the sensorimotor cortices and a shift of the dominant spectral peak in α and β frequencies toward lower frequencies (median ± SD peak frequency: 24.5 ± 2.6 Hz to 12.8 ± 2.3 Hz in Parkinson disease; 13.8 ± 2.1 Hz to 12.1 ± 1.0 Hz in essential tremor). Despite local increases in power, sensorimotor cortical coherence was suppressed with propofol in both cohorts, specifically in β frequencies (18 to 29 Hz) for Parkinson disease and α and β (10 to 48 Hz) in essential tremor.ConclusionsThe decrease in functional connectivity between sensory and motor cortices, despite an increase in local spectral power, suggests that propofol causes a functional disconnection of cortices with increases in autonomous activity within cortical regions. This pattern occurs across diseases evaluated, suggesting that these may be generalizable effects of propofol in patients with movement disorders and beyond. Sensorimotor network disruption may underlie anesthetic-induced loss of volitional control

    Table_1_Modulation of Spectral Representation and Connectivity Patterns in Response to Visual Narrative in the Human Brain.docx

    No full text
    The regional brain networks and the underlying neurophysiological mechanisms subserving the cognition of visual narrative in humans have largely been studied with non-invasive brain recording. In this study, we specifically investigated how regional and cross-regional cortical activities support visual narrative interpretation using intracranial stereotactic electroencephalograms recordings from thirteen human subjects (6 females, and 7 males). Widely distributed recording sites across the brain were sampled while subjects were explicitly instructed to observe images from fables presented in “sequential” order, and a set of images drawn from multiple fables presented in “scrambled” order. Broadband activity mainly within the frontal and temporal lobes were found to encode if a presented image is part of a visual narrative (sequential) or random image set (scrambled). Moreover, the temporal lobe exhibits strong activation in response to visual narratives while the frontal lobe is more engaged when contextually novel stimuli are presented. We also investigated the dynamics of interregional interactions between visual narratives and contextually novel series of images. Interestingly, the interregional connectivity is also altered between sequential and scrambled sequences. Together, these results suggest that both changes in regional neuronal activity and cross-regional interactions subserve visual narrative and contextual novelty processing.</p

    Pallidal stimulation in Parkinson disease differentially modulates local and network β activity

    No full text
    β hypersynchrony within the basal ganglia-thalamocortical (BGTC) network has been suggested as a hallmark of Parkinson disease (PD) pathophysiology. Subthalamic nucleus (STN)-DBS has been shown to alter cortical-subcortical synchronization. It is unclear whether this is a generalizable phenomenon of therapeutic stimulation across targets. Objectives. We aimed to evaluate whether DBS of the globus pallidus internus (GPi) results in cortical-subcortical desynchronization, despite the lack of monosynaptic connections between GPi and sensorimotor cortex. Approach. We recorded local field potentials from the GPi and electrocorticographic signals from the ipsilateral sensorimotor cortex, off medications in nine PD patients, undergoing DBS implantation. We analyzed both local oscillatory power and functional connectivity (coherence and debiased weighted phase lag index (dWPLI)) with and without stimulation while subjects were resting with eyes open. Main results. DBS significantly suppressed low β power within the GPi (-26.98% ± 15.14%), p \u3c 0.05) without modulation of sensorimotor cortical β power (low or high). In contrast, stimulation suppressed pallidocortical high β coherence (-38.89% ± 6.19%, p = 0.02) and dWPLI (-61.40% ± 8.75%, p = 0.02). Changes in cortical-subcortical functional connectivity were spatially specific to the motor cortex. Significance. We highlight the role of DBS in desynchronizing network activity, particularly in the high β band. The current study of GPi-DBS suggests these network-level effects are not necessarily dependent and potentially may be independent of the hyperdirect pathway. Importantly, these results draw a sharp distinction between the potential significance of low β oscillations locally within the basal ganglia and high β oscillations across the BGTC motor circuit

    Image_2_Modulation of Spectral Representation and Connectivity Patterns in Response to Visual Narrative in the Human Brain.TIF

    No full text
    The regional brain networks and the underlying neurophysiological mechanisms subserving the cognition of visual narrative in humans have largely been studied with non-invasive brain recording. In this study, we specifically investigated how regional and cross-regional cortical activities support visual narrative interpretation using intracranial stereotactic electroencephalograms recordings from thirteen human subjects (6 females, and 7 males). Widely distributed recording sites across the brain were sampled while subjects were explicitly instructed to observe images from fables presented in “sequential” order, and a set of images drawn from multiple fables presented in “scrambled” order. Broadband activity mainly within the frontal and temporal lobes were found to encode if a presented image is part of a visual narrative (sequential) or random image set (scrambled). Moreover, the temporal lobe exhibits strong activation in response to visual narratives while the frontal lobe is more engaged when contextually novel stimuli are presented. We also investigated the dynamics of interregional interactions between visual narratives and contextually novel series of images. Interestingly, the interregional connectivity is also altered between sequential and scrambled sequences. Together, these results suggest that both changes in regional neuronal activity and cross-regional interactions subserve visual narrative and contextual novelty processing.</p
    corecore