13,125 research outputs found
Interface creation and stress dynamics in plasma-deposited silicon dioxide films
The stress in amorphous silicon dioxide filmgrown by plasma-assisted deposition was investigated both during and after film growth for continuously and intermittently depositedfilms. It is shown that an intermittent deposition leads to the creation of interfacial regions during film growth, but also causes dynamical structural change in already-deposited film which results in a significantly different stress-thickness profile measured after deposition.Film growth in the continuously depositedfilm was also monitored using an in situ laser reflection technique, and a strong change in stress was detected at about 145nm which was attributed to the onset of island coalescence
Q-Dependent Susceptibilities in Ferromagnetic Quasiperiodic Z-Invariant Ising Models
We study the q-dependent susceptibility chi(q) of a series of quasiperiodic
Ising models on the square lattice. Several different kinds of aperiodic
sequences of couplings are studied, including the Fibonacci and silver-mean
sequences. Some identities and theorems are generalized and simpler derivations
are presented. We find that the q-dependent susceptibilities are periodic, with
the commensurate peaks of chi(q) located at the same positions as for the
regular Ising models. Hence, incommensurate everywhere-dense peaks can only
occur in cases with mixed ferromagnetic-antiferromagnetic interactions or if
the underlying lattice is aperiodic. For mixed-interaction models the positions
of the peaks depend strongly on the aperiodic sequence chosen.Comment: LaTeX2e, 26 pages, 9 figures (27 eps files). v2: Misprints correcte
Radiative transfer theory for polarimetric remote sensing of pine forest
The radiative transfer theory is applied to interpret polarimetric radar backscatter from pine forest with clustered vegetation structures. To take into account the clustered structures with the radiative transfer theory, the scattering function of each cluster is calculated by incorporating the phase interference of scattered fields from each component. Subsequently, the resulting phase matrix is used in the radiative transfer equations to evaluate the polarimetric backscattering coefficients from random medium layers embedded with vegetation clusters. Upon including the multi-scale structures, namely, trunks, primary and secondary branches, as well as needles, we interpret and simulate the polarimetric radar responses from pine forest for different frequencies and looking angles. The preliminary results are shown to be in good agreement with the measured backscattering coefficients at the Landes maritime pine forest during the MAESTRO-1 experiment
Halftone Image Watermarking by Content Aware Double-sided Embedding Error Diffusion
In this paper, we carry out a performance analysis from a probabilistic
perspective to introduce the EDHVW methods' expected performances and
limitations. Then, we propose a new general error diffusion based halftone
visual watermarking (EDHVW) method, Content aware Double-sided Embedding Error
Diffusion (CaDEED), via considering the expected watermark decoding performance
with specific content of the cover images and watermark, different noise
tolerance abilities of various cover image content and the different importance
levels of every pixel (when being perceived) in the secret pattern (watermark).
To demonstrate the effectiveness of CaDEED, we propose CaDEED with expectation
constraint (CaDEED-EC) and CaDEED-NVF&IF (CaDEED-N&I). Specifically, we build
CaDEED-EC by only considering the expected performances of specific cover
images and watermark. By adopting the noise visibility function (NVF) and
proposing the importance factor (IF) to assign weights to every embedding
location and watermark pixel, respectively, we build the specific method
CaDEED-N&I. In the experiments, we select the optimal parameters for NVF and IF
via extensive experiments. In both the numerical and visual comparisons, the
experimental results demonstrate the superiority of our proposed work
SHOP2: An HTN Planning System
The SHOP2 planning system received one of the awards for distinguished
performance in the 2002 International Planning Competition. This paper
describes the features of SHOP2 which enabled it to excel in the competition,
especially those aspects of SHOP2 that deal with temporal and metric planning
domains
Study of design parameters for squeeze film air journal bearing – excitation frequency and amplitude
The paper presents a design of squeeze film air journal bearing based on the design rules derived from CFX and FEA simulation study of an air film in between two flat plates, one of which was driven in a sinusoidal manner. The rules are that the oscillation frequency should be at least 15 kHz and that the oscillation amplitude be as large as possible to ensure a greater film thickness and to allow the bearing to reach its stable equilibrium quickly. The proposed journal bearing is made from AL2024-T3, of 20.02 mm outer diameter, 600 mm length and 2 mm thickness. Three 20-mm long fins are on the outer surface of the bearing tube and are spaced 120° apart; three longitudinal flats are milled equi-spaced between the fins and two piezoelectric actuators are mounted lengthwise on each flat. Such a design produces a modal shape on the bearing tube which resembles a triangle. When excited in this mode at the frequency of 16.37 kHz, and a voltage of 75 V AC with 75 V DC offset acting on the piezoelectric actuators, the air gap underneath of the bearing tube behaves as a squeeze air film with a response amplitude of 3.22 μm. The three design rules were validated by experiments
Application of theoretical models to active and passive remote sensing of saline ice
The random medium model is used to interpret the polarimetric active and passive measurements of saline ice. The ice layer is described as a host ice medium embedded with randomly distributed inhomogeneities, and the underlying sea water is considered as a homogeneous half-space. The scatterers in the ice layer are modeled with an ellipsoidal correlation function. The orientation of the scatterers is vertically aligned and azimuthally random. The strong permittivity fluctuation theory is employed to calculate the effective permittivity and the distorted Born approximation is used to obtain the polarimetric scattering coefficients. We also calculate the thermal emissions based on the reciprocity and energy conservation principles. The effects of the random roughness at the air-ice, and ice-water interfaces are accounted for by adding the surface scattering to the volume scattering return incoherently. The above theoretical model, which has been successfully applied to analyze the radar backscatter data of the first-year sea ice near Point Barrow, AK, is used to interpret the measurements performed in the CRRELEX program
Recommended from our members
Distinct mechanisms of Drosophila CRYPTOCHROME-mediated light-evoked membrane depolarization and in vivo clock resetting.
Drosophila CRYPTOCHROME (dCRY) mediates electrophysiological depolarization and circadian clock resetting in response to blue or ultraviolet (UV) light. These light-evoked biological responses operate at different timescales and possibly through different mechanisms. Whether electron transfer down a conserved chain of tryptophan residues underlies biological responses following dCRY light activation has been controversial. To examine these issues in in vivo and in ex vivo whole-brain preparations, we generated transgenic flies expressing tryptophan mutant dCRYs in the conserved electron transfer chain and then measured neuronal electrophysiological phototransduction and behavioral responses to light. Electrophysiological-evoked potential analysis shows that dCRY mediates UV and blue-light-evoked depolarizations that are long lasting, persisting for nearly a minute. Surprisingly, dCRY appears to mediate red-light-evoked depolarization in wild-type flies, absent in both cry-null flies, and following acute treatment with the flavin-specific inhibitor diphenyleneiodonium in wild-type flies. This suggests a previously unsuspected functional signaling role for a neutral semiquinone flavin state (FADH•) for dCRY. The W420 tryptophan residue located closest to the FAD-dCRY interaction site is critical for blue- and UV-light-evoked electrophysiological responses, while other tryptophan residues within electron transfer distance to W420 do not appear to be required for light-evoked electrophysiological responses. Mutation of the dCRY tryptophan residue W342, more distant from the FAD interaction site, mimics the cry-null behavioral light response to constant light exposure. These data indicate that light-evoked dCRY electrical depolarization and clock resetting are mediated by distinct mechanisms
Generalized Supersymmetric Perturbation Theory
Using the basic ingredient of supersymmetry, we develop a simple alternative
approach to perturbation theory in one-dimensional non-relativistic quantum
mechanics. The formulae for the energy shifts and wave functions do not involve
tedious calculations which appear in the available perturbation theories. The
model applicable in the same form to both the ground state and excited bound
states, unlike the recently introduced supersymmetric perturbation technique
which, together with other approaches based on logarithmic perturbation theory,
are involved within the more general framework of the present formalism.Comment: 13 pages article in LaTEX (uses standard article.sty). No Figures.
Sent to Ann. Physics (2004
- …
