240 research outputs found

    Siting and Approval Process for an LNG Terminal at Wilhelmshaven: A Case Study on Decision Making Concerning Risk-Prone Facilities in the Federal Republic of Germany

    Get PDF
    This case study was performed in the context of a larger research project at IIASA: the Study on Liquefied Energy Gas Terminal Siting (Kunreuther, Linnerooth, et al, 1982). A comparison of four concrete decision processes in four countries (namely the Federal Republic of Germany, the Netherlands, the United Kingdom, and the United States), is an intrinsic part of this project. All the studies are concerned with siting decisions on major energy gas import or export facilities that were made in the last decade. The comparative evaluation of these case studies seeks, in particular, a greater insight into the way technical studies succeed or fail to influence political decisions. In the FRG the selected decision concerns the siting of an import terminal to unload, store, and regasify liquefied natural gas (LNG) shipped in special tankers from distant producing countries. This project was conceived around 1970 by German energy companies. Approximately ten years later, in July 1979, the plans for an LNG terminal at Wilhelmshaven had received all the necessary approvals, licenses, and permits for construction to be started. The description and analysis of the public decision-making process leading to this approval is the topic of the study presented here. Since the main goal of this research is a deeper understanding of the events leading up to such a decision, it does not matter that the project has yet to be realized

    Characterisation of the new EpCAM-specific antibody HO-3: implications for trifunctional antibody immunotherapy of cancer

    Get PDF
    Epithelial cell adhesion molecule EpCAM is a transmembrane glycoprotein that is frequently overexpressed in a variety of carcinomas. This pan-carcinoma antigen has served as the target for a plethora of immunotherapies. Innovative therapeutic approaches include the use of trifunctional antibodies (trAbs) that recruit and activate different types of immune effector cells at the tumour site. The trAb catumaxomab has dual specificity for EpCAM and CD3. In patients with malignant ascites, catumaxomab significantly increased the paracentesis-free interval, corroborating the high efficacy of this therapeutic antibody. Here, we characterised the monoclonal antibody (mAb) HO-3, that is, the EpCAM-binding arm of catumaxomab. Peptide mapping indicated that HO-3 recognises a discontinuous epitope, having three binding sites in the extracellular region of EpCAM. Studies with glycosylation-deficient mutants showed that mAb HO-3 recognised EpCAM independently of its glycosylation status. High-affinity binding was not only detected for mAb HO-3, but also for the monovalent EpCAM-binding arm of catumaxomab with an excellent KD of 5.6 × 10−10 M. Furthermore, trAb catumaxomab was at least a 1000-fold more effective in eliciting the eradication of tumour cells by effector peripheral blood mononuclear cells compared with mAb HO-3. These findings suggest the great therapeutic potential of trAbs and clearly speak in favour of EpCAM-directed cancer immunotherapies

    Volume 14. Article 2. Fish endocrinology

    Get PDF
    https://elischolar.library.yale.edu/bulletin_yale_bingham_oceanographic_collection/1152/thumbnail.jp

    Gene processing control loops suggested by sequencing, splicing, and RNA folding

    Get PDF
    Abstract Background Small RNAs are known to regulate diverse gene expression processes including translation, transcription, and splicing. Among small RNAs, the microRNAs (miRNAs) of 17 to 27 nucleotides (nts) undergo biogeneses including primary transcription, RNA excision and folding, nuclear export, cytoplasmic processing, and then bioactivity as regulatory agents. We propose that analogous hairpins from RNA molecules that function as part of the spliceosome might also be the source of small, regulatory RNAs (somewhat smaller than miRNAs). Results Deep sequencing technology has enabled discovery of a novel 16-nt RNA sequence in total RNA from human brain that we propose is derived from RNU1, an RNA component of spliceosome assembly. Bioinformatic alignments compel inquiring whether the novel 16-nt sequence or its precursor have a regulatory function as well as determining aspects of how processing intersects with the miRNA biogenesis pathway. Specifically, our preliminary in silico investigations reveal the sequence could regulate splicing factor Arg/Ser rich 1 (SFRS1), a gene coding an essential protein component of the spliceosome. All 16-base source sequences in the UCSC Human Genome Browser are within the 14 instances of RNU1 genes listed in wgEncodeGencodeAutoV3. Furthermore, 10 of the 14 instances of the sequence are also within a common 28-nt hairpin-forming subsequence of RNU1. Conclusions An abundant 16-nt RNA sequence is sourced from a spliceosomal RNA, lies in a stem of a predicted RNA hairpin, and includes reverse complements of subsequences of the 3'UTR of a gene coding for a spliceosome protein. Thus RNU1 could function both as a component of spliceosome assembly and as inhibitor of production of the essential, spliceosome protein coded by SFRS1. Beyond this example, a general procedure is needed for systematic discovery of multiple alignments of sequencing, splicing, and RNA folding data

    Whole Transcriptome Sequencing Reveals Gene Expression and Splicing Differences in Brain Regions Affected by Alzheimer's Disease

    Get PDF
    Recent studies strongly indicate that aberrations in the control of gene expression might contribute to the initiation and progression of Alzheimer's disease (AD). In particular, alternative splicing has been suggested to play a role in spontaneous cases of AD. Previous transcriptome profiling of AD models and patient samples using microarrays delivered conflicting results. This study provides, for the first time, transcriptomic analysis for distinct regions of the AD brain using RNA-Seq next-generation sequencing technology. Illumina RNA-Seq analysis was used to survey transcriptome profiles from total brain, frontal and temporal lobe of healthy and AD post-mortem tissue. We quantified gene expression levels, splicing isoforms and alternative transcript start sites. Gene Ontology term enrichment analysis revealed an overrepresentation of genes associated with a neuron's cytological structure and synapse function in AD brain samples. Analysis of the temporal lobe with the Cufflinks tool revealed that transcriptional isoforms of the apolipoprotein E gene, APOE-001, -002 and -005, are under the control of different promoters in normal and AD brain tissue. We also observed differing expression levels of APOE-001 and -002 splice variants in the AD temporal lobe. Our results indicate that alternative splicing and promoter usage of the APOE gene in AD brain tissue might reflect the progression of neurodegeneration

    Occurrence of an Intersexual Blacktip Shark in the Northern Gulf of Mexico, with Notes on the Standardization of Classifications for This Condition in Elasmobranchs

    Get PDF
    An intersexual Blacktip Shark Carcharhinus limbatus with a testis, immature female reproductive tracts (embedded), and claspers was caught in the Gulf of Mexico. Histology of the single gonad revealed that all stages of spermatogenesis were occurring; however, the absence of ovaries and a male duct system suggests that neither sex would have been functional in this individual. Intersexuality has been reported in 17 families and 36 species of elasmobranchs. The degree to which the different sexes are present in a given individual is often difficult to categorize by normal hermaphroditic standards, as this is typically an anomalous presentation in elasmobranchs. Therefore, this report provides three categories for classification (basic, incomplete, and complete intersexuality) to standardize terminology and allow for more precise comparisons to be made among elasmobranch examples. Basic intersexuals have gonadal tissue of only one sex and a combination of other male and female characters with neither or only one sex being complete. Incomplete intersexuals have gonadal tissue of both sexes and a combination of other male and female characters; however, neither or only one sex is complete. Complete intersexuals have claspers as well as gonadal tissue and tracts for both sexes. The majority of the reported intersexual elasmobranchs, including the shark described here, are basic intersexuals

    A Cross-Study Transcriptional Analysis of Parkinson's Disease

    Get PDF
    The study of Parkinson's disease (PD), like other complex neurodegenerative disorders, is limited by access to brain tissue from patients with a confirmed diagnosis. Alternatively the study of peripheral tissues may offer some insight into the molecular basis of disease susceptibility and progression, but this approach still relies on brain tissue to benchmark relevant molecular changes against. Several studies have reported whole-genome expression profiling in post-mortem brain but reported concordance between these analyses is lacking. Here we apply a standardised pathway analysis to seven independent case-control studies, and demonstrate increased concordance between data sets. Moreover data convergence increased when the analysis was limited to the five substantia nigra (SN) data sets; this highlighted the down regulation of dopamine receptor signaling and insulin-like growth factor 1 (IGF1) signaling pathways. We also show that case-control comparisons of affected post mortem brain tissue are more likely to reflect terminal cytoarchitectural differences rather than primary pathogenic mechanisms. The implementation of a correction factor for dopaminergic neuronal loss predictably resulted in the loss of significance of the dopamine signaling pathway while axon guidance pathways increased in significance. Interestingly the IGF1 signaling pathway was also over-represented when data from non-SN areas, unaffected or only terminally affected in PD, were considered. Our findings suggest that there is greater concordance in PD whole-genome expression profiling when standardised pathway membership rather than ranked gene list is used for comparison

    Quaking Regulates Hnrnpa1 Expression through Its 3′ UTR in Oligodendrocyte Precursor Cells

    Get PDF
    In mice, Quaking (Qk) is required for myelin formation; in humans, it has been associated with psychiatric disease. QK regulates the stability, subcellular localization, and alternative splicing of several myelin-related transcripts, yet little is known about how QK governs these activities. Here, we show that QK enhances Hnrnpa1 mRNA stability by binding a conserved 3′ UTR sequence with high affinity and specificity. A single nucleotide mutation in the binding site eliminates QK-dependent regulation, as does reduction of QK by RNAi. Analysis of exon expression across the transcriptome reveals that QK and hnRNP A1 regulate an overlapping subset of transcripts. Thus, a simple interpretation is that QK regulates a large set of oligodendrocyte precursor genes indirectly by increasing the intracellular concentration of hnRNP A1. Together, the data show that hnRNP A1 is an important QK target that contributes to its control of myelin gene expression

    Blood-Based Gene Expression Profiles Models for Classification of Subsyndromal Symptomatic Depression and Major Depressive Disorder

    Get PDF
    Subsyndromal symptomatic depression (SSD) is a subtype of subthreshold depressive and also lead to significant psychosocial functional impairment as same as major depressive disorder (MDD). Several studies have suggested that SSD is a transitory phenomena in the depression spectrum and is thus considered a subtype of depression. However, the pathophysioloy of depression remain largely obscure and studies on SSD are limited. The present study compared the expression profile and made the classification with the leukocytes by using whole-genome cRNA microarrays among drug-free first-episode subjects with SSD, MDD, and matched controls (8 subjects in each group). Support vector machines (SVMs) were utilized for training and testing on candidate signature expression profiles from signature selection step. Firstly, we identified 63 differentially expressed SSD signatures in contrast to control (P< = 5.0E-4) and 30 differentially expressed MDD signatures in contrast to control, respectively. Then, 123 gene signatures were identified with significantly differential expression level between SSD and MDD. Secondly, in order to conduct priority selection for biomarkers for SSD and MDD together, we selected top gene signatures from each group of pair-wise comparison results, and merged the signatures together to generate better profiles used for clearly classify SSD and MDD sets in the same time. In details, we tried different combination of signatures from the three pair-wise compartmental results and finally determined 48 gene expression signatures with 100% accuracy. Our finding suggested that SSD and MDD did not exhibit the same expressed genome signature with peripheral blood leukocyte, and blood cell–derived RNA of these 48 gene models may have significant value for performing diagnostic functions and classifying SSD, MDD, and healthy controls
    corecore