438 research outputs found
Monolithic Photoelectrochemical Device for Direct Water Splitting with 19% Efficiency
Recent rapid progress in efficiencies for solar water splitting by
photoelectrochemical devices has enhanced its prospects to enable storable
renewable energy. Efficient solar fuel generators all use tandem photoelectrode
structures, and advanced integrated devices incorporate corrosion protection
layers as well as heterogeneous catalysts. Realization of near thermodynamic
limiting performance requires tailoring the energy band structure of the
photoelectrode and also the optical and electronic properties of the surface
layers exposed to the electrolyte. Here, we report a monolithic device
architecture that exhibits reduced surface reflectivity in conjunction with
metallic Rh nanoparticle catalyst layers that minimize parasitic light
absorption. Additionally, the anatase TiO2 protection layer on the photocathode
creates a favorable internal band alignment for hydrogen evolution. An initial
solar-to-hydrogen efficiency of 19.3 % is obtained in acidic electrolyte and an
efficiency of 18.5 % is achieved at neutral pH condition (under simulated
sunlight)
Design Principles for Plasmonic Nanoparticle Devices
For all applications of plasmonics to technology it is required to tailor the
resonance to the optical system in question. This chapter gives an
understanding of the design considerations for nanoparticles needed to tune the
resonance. First the basic concepts of plasmonics are reviewed with a focus on
the physics of nanoparticles. An introduction to the finite element method is
given with emphasis on the suitability of the method to nanoplasmonic device
simulation. The effects of nanoparticle shape on the spectral position and
lineshape of the plasmonic resonance are discussed including retardation and
surface curvature effects. The most technologically important plasmonic
materials are assessed for device applicability and the importance of
substrates in light scattering is explained. Finally the application of
plasmonic nanoparticles to photovoltaic devices is discussed.Comment: 29 pages, 15 figures, part of an edited book: "Linear and Non-Linear
Nanoplasmonics
Properties of silicon dioxide layers with embedded metal nanocrystals produced by oxidation of Si:Me mixture
A two-dimensional layers of metal (Me) nanocrystals embedded in SiO2 were produced by pulsed laser deposition of uniformly mixed Si:Me film followed by its furnace oxidation and rapid thermal annealing. The kinetics of the film oxidation and the structural properties of the prepared samples were investigated by Rutherford backscattering spectrometry, and transmission electron microscopy, respectively. The electrical properties of the selected SiO2:Me nanocomposite films were evaluated by measuring C-V and I-V characteristics on a metal-oxide-semiconductor stack. It is found that Me segregation induced by Si:Me mixture oxidation results in the formation of a high density of Me and silicide nanocrystals in thin film SiO2 matrix. Strong evidence of oxidation temperature as well as impurity type effect on the charge storage in crystalline Me-nanodot layer is demonstrated by the hysteresis behavior of the high-frequency C-V curves
Origin of Shifts in the Surface Plasmon Resonance Frequencies for Au and Ag Nanoparticles
Origin of shifts in the surface plasmon resonance (SPR) frequency for noble
metal (Au, Ag) nanoclusters are discussed in this book chapter. Spill out of
electron from the Fermi surface is considered as the origin of red shift. On
the other hand, both screening of electrons of the noble metal in porous media
and quantum effect of screen surface electron are considered for the observed
blue shift in the SPR peak position.Comment: 37 pages, 14 Figures in the submitted book chapter of The Annual
Reviews in Plasmonics, edited by Professor Chris D. Geddes. Springer Scinec
Photon Management in Two-Dimensional Disordered Media
Elaborating reliable and versatile strategies for efficient light coupling
between free space and thin films is of crucial importance for new technologies
in energy efficiency. Nanostructured materials have opened unprecedented
opportunities for light management, notably in thin-film solar cells. Efficient
coherent light trapping has been accomplished through the careful design of
plasmonic nanoparticles and gratings, resonant dielectric particles and
photonic crystals. Alternative approaches have used randomly-textured surfaces
as strong light diffusers to benefit from their broadband and wide-angle
properties. Here, we propose a new strategy for photon management in thin films
that combines both advantages of an efficient trapping due to coherent optical
effects and broadband/wide-angle properties due to disorder. Our approach
consists in the excitation of electromagnetic modes formed by multiple light
scattering and wave interference in two-dimensional random media. We show, by
numerical calculations, that the spectral and angular responses of thin films
containing disordered photonic patterns are intimately related to the in-plane
light transport process and can be tuned through structural correlations. Our
findings, which are applicable to all waves, are particularly suited for
improving the absorption efficiency of thin-film solar cells and can provide a
novel approach for high-extraction efficiency light-emitting diodes
A single-photon transistor using nano-scale surface plasmons
It is well known that light quanta (photons) can interact with each other in
nonlinear media, much like massive particles do, but in practice these
interactions are usually very weak. Here we describe a novel approach to
realize strong nonlinear interactions at the single-photon level. Our method
makes use of recently demonstrated efficient coupling between individual
optical emitters and tightly confined, propagating surface plasmon excitations
on conducting nanowires. We show that this system can act as a nonlinear
two-photon switch for incident photons propagating along the nanowire, which
can be coherently controlled using quantum optical techniques. As a novel
application, we discuss how the interaction can be tailored to create a
single-photon transistor, where the presence or absence of a single incident
photon in a ``gate'' field is sufficient to completely control the propagation
of subsequent ``signal'' photons.Comment: 20 pages, 4 figure
Resonant Thermoelectric Nanophotonics
Photodetectors are typically based either on photocurrent generation from electron–hole pairs in semiconductor structures or on bolometry for wavelengths that are below bandgap absorption. In both cases, resonant plasmonic and nanophotonic structures have been successfully used to enhance performance. Here, we show subwavelength thermoelectric nanostructures designed for resonant spectrally selective absorption, which creates large localized temperature gradients even with unfocused, spatially uniform illumination to generate a thermoelectric voltage. We show that such structures are tunable and are capable of wavelength-specific detection, with an input power responsivity of up to 38 V W^(–1), referenced to incident illumination, and bandwidth of nearly 3 kHz. This is obtained by combining resonant absorption and thermoelectric junctions within a single suspended membrane nanostructure, yielding a bandgap-independent photodetection mechanism. We report results for both bismuth telluride/antimony telluride and chromel/alumel structures as examples of a potentially broader class of resonant nanophotonic thermoelectric materials for optoelectronic applications such as non-bandgap-limited hyperspectral and broadband photodetectors
Unrelenting plasmons
Following a brief historic introduction to plasmons, their useful properties and early applications, we highlight some of the key advances in the field over the past decade. We then discuss new directions for the future, such as the use of 2D materials and strong coupling phenomena, which are likely to shape the field over the next ten years. For centuries, metals were employed in optical applications only as mirrors and gratings. New vistas opened up in the late 1970s and early 1980s with the discovery of surface-enhanced Raman scattering and the use of surface plasmon (SP) resonances for sensing. However, it was not until the 1990s, with the appearance of accurate and reliable nanofabrication techniques, that plasmonics blossomed1. Initially, the attention focused on the exploitation of SPs (collective electronic oscillations at the surface of metals) for sensing, subwavelength waveguiding and extraordinary optical transmission2. Since then, the scientific and technological interest in SPs has expanded. Correspondingly, as illustrated in Fig. 1, the number of publications in the field has increased in a steady exponential fashion for more than two decades, and the momentum driving plasmonics research looks set to continue (...
Graphene plasmonics
Two rich and vibrant fields of investigation, graphene physics and
plasmonics, strongly overlap. Not only does graphene possess intrinsic plasmons
that are tunable and adjustable, but a combination of graphene with noble-metal
nanostructures promises a variety of exciting applications for conventional
plasmonics. The versatility of graphene means that graphene-based plasmonics
may enable the manufacture of novel optical devices working in different
frequency ranges, from terahertz to the visible, with extremely high speed, low
driving voltage, low power consumption and compact sizes. Here we review the
field emerging at the intersection of graphene physics and plasmonics.Comment: Review article; 12 pages, 6 figures, 99 references (final version
available only at publisher's web site
- …