355 research outputs found

    MICROSTRUCTURE AND CHEMICAL COMPOSITION OF CENTAUR CRYSTAL GaSe:AgGaS2

    Get PDF

    Investigation of the optical spectra of barium-zinc (aluminum) fluoroborates and barium-zinc fluorocarbonate from first principles

    Get PDF
    The Raman scattering, infrared absorption, and reflection spectra of hexagonal non-centrosymmetric BaZnBO3F and BaAlBO3F2 and centrosymmetric BaZn3BO3F2 and BaZnCO3F2 are calculated using the standard procedures of the CRYSTAL package with the basis of localized orbitals and the B3LYP hybrid functional within the framework of the Hartree-Fock conjugate perturbation method. It is shown that the layered structure of crystals manifests itself in the spectra of vibrational modes polarized along and perpendicular to the c axis with wavenumbers for the lattice region formed by displacements of atoms in [BaF]∞ and [MAO3]∞ (M: Zn, Al; A: B, C) layers, for molecular deformation outside and in the plane of anions BO3 and CO3. The quantitative and qualitative composition of the spectra is determined by the symmetry of the crystal lattice

    Enhanced Yb:YAG active mirrors for high power laser amplifiers

    Get PDF
    The work is aimed at the investigation of the influence of nonlinear active ions concentration profiles in Yb:YAG laser elements on temperature distribution and wavefront distortions during amplification using sub-kilowatt level diode pumping. A mathematical model is presented for the theoretical study of the amplification process in crystals with cubic crystal system. A detailed comparison of Yb:YAG active elements with the same thickness and absorbed pumping power, but with various concentration profiles of Yb3+, ions is carried out. It is shown that the use of active elements with an increasing dopant concentration in the pump beam direction allows one to optimize the temperature profile inside the active element and, thus, reduce the thermal-induced wavefront distortions of the amplified radiation. Modeling is carried out for the experimentally grown crystal with linear concentration gradient profile. It is shown that the linear doping profile with a gradient of 0.65 at.%/mm allows increasing the small-signal gain up to 10% and decreasing the thermal-induced wavefront distortions by ~15%

    High-temperature abatement of N2O over FeOx/CeO2-Al2O3 catalysts: the effects of oxygen mobility

    Get PDF
    CeO2-Al2O3 oxides prepared by co-precipitation (Ce+Al) or CeOx precipitation onto Al2O3 (Ce/Al) to obtain dispersed CeO2 and samples with further supported FeOx (2.5–9.9 weight% in terms of Fe) were characterized by XRD, XPS, DDPA and Raman. Fe/Ce/Al samples with lower surface concentrations of Fe3+ were substantially more active in N2O decomposition at 700–900 0C. It was related to higher oxygen mobility, as estimated from 16O/18O exchange experiments and provided by preferential exposing of (Fe-)Ce oxides. Stabilization of some Ce as isolated Ce3+ in Fe-Ce- Al mixed oxides dominating in the bulk and surface layers of Fe/(Ce + Al) samples retards the steps responsible for fast additional oxygen transfer to the sites of O2 desorption

    Markers of restenosis after percutaneous transluminal balloon angioplasty in patients with critical limb ischemia

    Get PDF
    Among cardiovascular diseases, chronic obliterating lesions of the arteries of lower extremities, which are one of the important problems of modern healthcare, are distinguished. In most cases, the cause of damage to the arteries of lower extremities is atherosclerosis. The most severe form is chronic ischemia, characterized by pain at rest and ischemic ulcers, ultimately increasing the risk of limb loss and cardiovascular mortality. Therefore, patients with critical limb ischemia need limb revascularization. Percutaneous transluminal balloon angioplasty is one of the least invasive and safe approaches, with advantages for patients with comorbidities. However, after this procedure, restenosis is still possible. Early detection of changes in the composition of some molecules as markers of restenosis will help screen patients at the risk of restenosis, as well as find ways to apply efforts for further directions of inhibition of this process. The purpose of this review is to provide the most important and up-to-date information on the mechanisms of restenosis development, as well as possible predictors of their occurrence. The information collected in this publication may be useful in predicting outcomes after surgical treatment and will also find new ways for the target implication to the mechanisms of development of restenosis and atherosclerosis

    Conduction mechanism of metal-TiO2–Si structures

    Get PDF
    The conduction model has been proposed for the metal-TiO2–Si (MIS) structures. Rutile films have been prepared on Si substrates by magnetron sputtering of TiO2 target and annealing in the air at temperatures T = 800 and 1050 K. The current-voltage (CVC) and capacitance-voltage characteristics of the structures have been measured over the range of T = 283–363 K. At positive potentials on the gate, the conductivity of the MIS structures is determined by the space charge-limited current in the dielectric layer
    corecore