210 research outputs found
Confusions in orbivirus protein classification
An extensive comparative analysis of orbivirus genomes revealed four cases of unclear numeration and protein designation, due to confused reference to protein size or segment size by which they are encoded. A concise nomenclature based on type species, sequence homology and functional characteristics independent of segment or protein size is suggested
Genetic Characterization of the Tick-Borne Orbiviruses
The International Committee for Taxonomy of Viruses (ICTV) recognizes four species of tick-borne orbiviruses (TBOs): Chenuda virus, Chobar Gorge virus, Wad Medani virus and Great Island virus (genus Orbivirus, family Reoviridae). Nucleotide (nt) and amino acid (aa) sequence comparisons provide a basis for orbivirus detection and classification, however full genome sequence data were only available for the Great Island virus species. We report representative genome-sequences for the three other TBO species (virus isolates: Chenuda virus (CNUV); Chobar Gorge virus (CGV) and Wad Medani virus (WMV)). Phylogenetic comparisons show that TBOs cluster separately from insect-borne orbiviruses (IBOs). CNUV, CGV, WMV and GIV share low level aa/nt identities with other orbiviruses, in 'conserved' Pol, T2 and T13 proteins/genes, identifying them as four distinct virus-species. The TBO genome segment encoding cell attachment, outer capsid protein 1 (OC1), is approximately half the size of the equivalent segment from insect-borne orbiviruses, helping to explain why tick-borne orbiviruses have a ~1 kb smaller genome
Isolates of Liao Ning Virus from Wild-Caught Mosquitoes in the Xinjiang Province of China in 2005
Liao ning virus (LNV) is related to Banna virus, a known human-pathogen present in south-east Asia. Both viruses belong to the genus Seadornavirus, family Reoviridae. LNV causes lethal haemorrhage in experimentally infected mice. Twenty seven isolates of LNV were made from mosquitoes collected in different locations within the Xinjiang province of north-western China during 2005. These mosquitoes were caught in the accommodation of human patients with febrile manifestations, or in animal barns where sheep represent the main livestock species. The regions where LNV was isolated are affected by seasonal encephalitis, but are free of Japanese encephalitis (JE). Genome segment 10 (Seg-10) (encoding cell-attachment and serotype-determining protein VP10) and Seg-12 (encoding non-structural protein VP12) were sequenced for multiple LNV isolates. Phylogenetic analyses showed a less homogenous Seg-10 gene pool, as compared to segment 12. However, all of these isolates appear to belong to LNV type-1. These data suggest a relatively recent introduction of LNV into Xinjiang province, with substitution rates for LNV Seg-10 and Seg-12, respectively, of 2.29Ă10â4 and 1.57Ă10â4 substitutions/nt/year. These substitution rates are similar to those estimated for other dsRNA viruses. Our data indicate that the history of LNV is characterized by a lack of demographic fluctuations. However, a decline in the LNV population in the late 1980s - early 1990s, was indicated by data for both Seg-10 and Seg-12. Data also suggest a beginning of an expansion in the late 1990s as inferred from Seg-12 skyline plot
Transfer Functions and Penetrations of Five Differential Mobility Analyzers for Sub-2 nm Particle Classification
The transfer functions and penetrations of five differential mobility analyzers (DMAs) for sub-2 nm particle classification were evaluated in this study. These DMAs include the TSI nanoDMA, the Caltech radial DMA (RDMA) and nanoRDMA, the Grimm nanoDMA, and the Karlsruhe-Vienna DMA. Measurements were done using tetra-alkyl ammonium ion standards with mobility diameters of 1.16, 1.47, and 1.70 nm. These monomobile ions were generated by electrospray followed by high resolution mobility classification. Measurements were focused at an aerosol-to-sheath flow ratio of 0.1. A data inversion routine was developed to obtain the true transfer function for each test DMA, and these measured transfer functions were compared with theory. DMA penetration efficiencies were also measured. An approximate model for diffusional deposition, based on the modified Gormley and Kennedy equation using an effective length, is given for each test DMA. These results quantitatively characterize the performance of the test DMAs in classifying sub-2 nm particles and can be readily used for DMA data inversion
Full Genome Characterization of the Culicoides-Borne Marsupial Orbiviruses: Wallal Virus, Mudjinbarry Virus and Warrego Viruses
Viruses belonging to the species Wallal virus and Warrego virus of the genus Orbivirus were identified as causative agents of blindness in marsupials in Australia during 1994/5. Recent comparisons of nucleotide (nt) and amino acid (aa) sequences have provided a basis for the grouping and classification of orbivirus isolates. However, full-genome sequence data are not available for representatives of all Orbivirus species. We report full-genome sequence data for three additional orbiviruses: Wallal virus (WALV); Mudjinabarry virus (MUDV) and Warrego virus (WARV). Comparisons of conserved polymerase (Pol), sub-core-shell 'T2' and core-surface 'T13' proteins show that these viruses group with other Culicoides borne orbiviruses, clustering with Eubenangee virus (EUBV), another orbivirus infecting marsupials. WARV shares <70% aa identity in all three conserved proteins (Pol, T2 and T13) with other orbiviruses, consistent with its classification within a distinct Orbivirus species. Although WALV and MUDV share <72.86%/67.93% aa/nt identity with other orbiviruses in Pol, T2 and T13, they share >99%/90% aa/nt identities with each other (consistent with membership of the same virus species - Wallal virus). However, WALV and MUDV share <68% aa identity in their larger outer capsid protein VP2(OC1), consistent with membership of different serotypes within the species - WALV-1 and WALV-2 respectively
Erosion éolienne dans les régions arides et semi-arides africaines : processus physiques, métrologie et techniques de lutte
Les régions arides du sud de la Tunisie sont des zones naturellement trÚs sensibles à l'érosion éolienne. Non seulement les précipitations dans ces régions sont faibles (inférieures à 200 mm), mais les sols sont fins, sableux et peu profonds, c'est-à -dire facilement érodables par le vent. L'utilisation de nouvelles techniques agricoles à la place des techniques traditionnelles a conduit à une augmentation de l'érosion éolienne dans ces régions. Par exemple, l'augmentation croissante de l'utilisation de la déchaumeuse à disques a eu d'importantes conséquences sur la dégradation des champs en modifiant la structure des sols et les caractéristiques de leur surface. Le présent travail de modélisation est centré sur la quantification de la déflation éolienne à l'échelle du sud tunisien en vue de déterminer en particulier les zones les plus sensibles à ce phénomÚne pour des objectifs de diagnostic et de stratégie de lutte efficace contre l'érosion éolienne. Les flux d'érosion éolienne sur le sud de la Tunisie ont été simulés pour l'année 2008 à une résolution de 10 km x 10 km en prenant en compte le type d'usage des sols et les pratiques agricoles associées à l'aide du modÚle d'érosion éolienne Dust Production Model (DPM, Marticorena et Bergametti [1995] ; Alfaro et al. [1998]). Afin de prendre en compte les différents types d'outils agricoles utilisés sur le domaine étudié, les paramétrisations du seuil et du flux d'érosion éolienne en fonction des caractéristiques des billons de labour (hauteur et espacement) développées par Kardous et al. [2005a ; b] ont été intégrées au DPM. [...
Umatilla Virus Genome Sequencing and Phylogenetic Analysis: Identification of Stretch Lagoon Orbivirus as a New Member of the Umatilla virus Species
The genus Orbivirus, family Reoviridae, includes 22 species of viruses with genomes composed of ten segments of linear dsRNA that are transmitted between their vertebrate hosts by insects or ticks, or with no identified vectors. Full-genome sequence data are available for representative isolates of the insect borne mammalian orbiviruses (including bluetongue virus), as well as a tick borne avian orbivirus (Great Island virus). However, no sequence data are as yet available for the mosquito borne avian orbiviruses
Candidates in Astroviruses, Seadornaviruses, Cytorhabdoviruses and Coronaviruses for +1 frame overlapping genes accessed by leaky scanning
<p>Abstract</p> <p>Background</p> <p>Overlapping genes are common in RNA viruses where they serve as a mechanism to optimize the coding potential of compact genomes. However, annotation of overlapping genes can be difficult using conventional gene-finding software. Recently we have been using a number of complementary approaches to systematically identify previously undetected overlapping genes in RNA virus genomes. In this article we gather together a number of promising candidate new overlapping genes that may be of interest to the community.</p> <p>Results</p> <p>Overlapping gene predictions are presented for the astroviruses, seadornaviruses, cytorhabdoviruses and coronaviruses (families <it>Astroviridae</it>, <it>Reoviridae</it>, <it>Rhabdoviridae </it>and <it>Coronaviridae</it>, respectively).</p
Third-hand smoking: indoor measurements of concentration and sizes of cigarette smoke particles after resuspension
International audienc
Complete Genome Characterisation of a Novel 26th Bluetongue Virus Serotype from Kuwait
Bluetongue virus is the âtypeâ species of the genus Orbivirus, family Reoviridae. Twenty four distinct bluetongue virus (BTV) serotypes have been recognized for decades, any of which is thought to be capable of causing âbluetongueâ (BT), an insect-borne disease of ruminants. However, two further BTV serotypes, BTV-25 (Toggenburg orbivirus, from Switzerland) and BTV-26 (from Kuwait) have recently been identified in goats and sheep, respectively. The BTV genome is composed of ten segments of linear dsRNA, encoding 7 virus-structural proteins (VP1 to VP7) and four distinct non-structural (NS) proteins (NS1 to NS4). We report the entire BTV-26 genome sequence (isolate KUW2010/02) and comparisons to other orbiviruses. Highest identity levels were consistently detected with other BTV strains, identifying KUW2010/02 as BTV. The outer-core protein and major BTV serogroup-specific antigen âVP7â showed 98% aa sequence identity with BTV-25, indicating a common ancestry. However, higher level of variation in the nucleotide sequence of Seg-7 (81.2% identity) suggests strong conservation pressures on the protein of these two strains, and that they diverged a long time ago. Comparisons of Seg-2, encoding major outer-capsid component and cell-attachment protein âVP2â identified KUW2010/02 as 26th BTV, within a 12th Seg-2 nucleotype [nucleotype L]. Comparisons of Seg-6, encoding the smaller outer capsid protein VP5, also showed levels of nt/aa variation consistent with identification of KUW2010/02 as BTV-26 (within a 9th Seg-6 nucleotype - nucleotype I). Sequence data for Seg-2 of KUW2010/02 were used to design four sets of oligonucleotide primers for use in BTV-26, type-specific RT-PCR assays. Analyses of other more conserved genome segments placed KUW2010/02 and BTV-25/SWI2008/01 closer to each other than to other âeasternâ or âwesternâ BTV strains, but as representatives of two novel and distinct geographic groups (topotypes). Our analyses indicate that all of the BTV genome segments have evolved under strong purifying selection
- âŠ