92 research outputs found

    EASR: Graph-based Framework for Energy Efficient Smart Routing in MANET using Availability Zones

    Get PDF
    Energy consumption in MobileAdhoc Network (MANET) is a topic of research from more than a decade. Althoughthere are multiple archival of literatures, that have proposed variousenergy-efficient algorithms for reducing the energy consumption to improveenergy efficiency. Establishing correct and reliable route is important designissue in MANET, but a more challenging goal is to provide energy efficientroute. But, it was observed that majority of such energy efficient routingprotocols just give symptomatic solution which addresses and mitigated theenergy issues overlooking various associated issues like quality of services.Moreover, in majority of research previous studies it is found that AODV andDSDV are highly in adoption rate among the researcher for solving energy issuesusing routing protocols. This manuscript after reviewing some of thesignificant literatures in past explored issues in existing AODV and DSDVand  proposes a novel energy efficientrouting protocols by incorporating a new actor called availability zone. Theproposed model shows better energy efficiency and QoS compared to AODV andDSDV

    Basic considerations in the dermatokinetics of topical formulations

    Get PDF
    Assessing the bioavailability of drug molecules at the site of action provides better insight into the efficiency of a dosage form. However, determining drug concentration in the skin layers following topical application of dermatological formulations is a great challenge. The protocols followed in oral formulations could not be applied for topical dosage forms. The regulatory agencies are considering several possible approaches such as tape stripping, microdialysis etc. On the other hand, the skin bioavailability assessment of xenobiotics is equally important for topical formulations in order to evaluate the toxicity. It is always possible that drug molecules applied on the skin surface may transport thorough the skin and reaches systemic circulation. Thus the real time measurement of molecules in the skin layer has become obligatory. In the last two decades, quite a few investigations have been carried out to assess the skin bioavailability and toxicity of topical/dermatological products. This review provides current understanding on the basics of dermatokinetics, drug depot formation, skin metabolism and clearance of drug molecules from the skin layers following application of topical formulations.A avaliação da biodisponibilidade de moléculas de fármacos no sítio de ação oferece melhor compreensão sobre a eficiência da forma de dosagem. Entretanto, a determinação da concentração de fármaco nas camadas da pele em seguida à aplicação tópica de formulações dermatológicas é um grande desafio. Os protocolos seguidos para as formulações orais não podem ser aplicados para as formulações tópicas. As agências regulatórias consideram várias abordagens possíveis, tape stripping, microdiálise etc. Por outro lado, a avaliação da biodisponibilidade de xenobióticos na pele é igualmente importante para as formulações tópicas para se avaliar a toxicidade. É sempre possível que as moléculas de fármaco aplicadas na superfície da pele sejam transportadas através da pele e alcancem a circulação sistêmica. Assim, a medida em tempo real de moléculas na camada da pele tem se tornado obrigatória. Nas últimas duas décadas, realizaram-se poucas pesquisas para avaliar a biodisponibilidade da pele e a toxicidade de produtos tópicos/dermatológicos. Esta revisão fornece a compreensão atual com base na dermatocinética, formação de fármaco de depósito, metabolismo da pele e o clearance das moléculas de fármaco das camadas da pele em seguida à aplicação de formulações tópicas

    1,2,3-Triazolyl-tetrahydropyrimidine conjugates as potential Sterol Carrier Protein-2 Inhibitors: Larvicidal activity against the Malaria Vector Anopheles arabiensis and In Silico Molecular Docking Study

    Get PDF
    Alteration of insect growth regulators by the action of inhibitors is becoming an attractive strategy to combat disease-transmitting insects. In the present study, we investigated the larvicidal effect of 1,2,3-triazolyl-pyrimidinone derivatives against the larvae of the mosquito Anopheles arabiensis, a vector of malaria. All compounds demonstrated insecticidal activity against mosquito larvae in a dose-dependent fashion. A preliminary study of the structure–activity relationship indicated that the electron-withdrawing substituent in the para position of the 4-phenyl-pyrimidinone moiety enhanced the molecules’ potency. A docking study of these derivatives revealed favorable binding affinity for the sterol carrier protein-2 receptor, a protein present in the intestine of the mosquito larvae. Being effective insecticides against the malaria-transmitting Anopheles arabiensis, 1,2,3-triazole-based pyrimidinones represent a starting point to develop novel inhibitors of insect growth regulators.Fil: Venugopala, Katharigatta N.. Durban University Of Technology; Sudáfrica. King Faisal University; Arabia SauditaFil: Shinu, Pottathil. King Faisal University; Arabia SauditaFil: Tratrat, Christophe. King Faisal University; Arabia SauditaFil: Deb, Pran Kishore. Philadelphia University Jordan; JordaniaFil: Gleiser, Raquel M.. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinar de Biología Vegetal (P). Grupo Vinculado Centro de Relevamiento y Evaluación de Recursos Agrícolas y Naturales; ArgentinaFil: Chandrashekharappa, Sandeep. National Institute Of Pharmaceutical Education And Research, Raebareli; IndiaFil: Chopra, Deepak. Indian Institute Of Science Education And Research Bhopal; IndiaFil: Attimarad, Mahesh. King Faisal University; Arabia SauditaFil: Nair, Anroop B.. King Faisal University; Arabia SauditaFil: Sreeharsha, Nagaraja. Vidya Siri College Of Pharmacy; India. King Faisal University; Arabia SauditaFil: Mahomoodally, Fawzi M.. University Of Mauritius; MauricioFil: Haroun, Michelyne. King Faisal University; Arabia SauditaFil: Kandeel, Mahmoud. Faculty Of Veteinary Medicine; Egipto. King Faisal University; Arabia SauditaFil: Asdaq, Syed Mohammed Basheeruddin. Almaarefa University; Arabia SauditaFil: Mohanlall, Viresh. Durban University Of Technology; SudáfricaFil: Al-Shari, Nizar A.. Jordan University Of Science And Technology; JordaniaFil: Morsy, Mohamed A.. King Faisal University; Arabia Saudita. Faculty Of Medicine; Egipt

    Larvicidal activities of 2-Aryl-2,3-Dihydroquinazolin -4-ones against malaria vector Anopheles arabiensis, In Silico ADMET prediction and molecular target investigation

    Get PDF
    Malaria, affecting all continents, remains one of the life-threatening diseases introduced by parasites that are transmitted to humans through the bites of infected Anopheles mosquitoes. Although insecticides are currently used to reduce malaria transmission, their safety concern for living systems, as well as the environment, is a growing problem. Therefore, the discovery of novel, less toxic, and environmentally safe molecules to effectively combat the control of these vectors is in high demand. In order to identify new potential larvicidal agents, a series of 2-aryl-1,2-dihydroquinazolin-4-one derivatives were synthesized and evaluated for their larvicidal activity against Anopheles arabiensis. The in silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of the compounds were also investigated and most of the derivatives possessed a favorable ADMET profile. Computational modeling studies of the title compounds demonstrated a favorable binding interaction against the acetylcholinesterase enzyme molecular target. Thus, 2-aryl-1,2-dihydroquinazolin-4-ones were identified as a novel class of Anopheles arabiensis insecticides which can be used as lead molecules for the further development of more potent and safer larvicidal agents for treating malaria.Fil: Venugopala, K. N.. Durban University Of Technology; SudáfricaFil: Pushpalatha, R.. Reva University; IndiaFil: Tratat, C.. King Faisal University; Arabia SauditaFil: Gleiser, Raquel M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Instituto Multidisciplinar de Biología Vegetal (P). Grupo Vinculado Centro de Relevamiento y Evaluación de Recursos Agrícolas y Naturales; ArgentinaFil: Bhandary, S.. Indian Institute Of Science Education And Research Bhopal; IndiaFil: Chopra, D.. Indian Institute Of Science Education And Research Bhopal; IndiaFil: Morsy, M.. King Faisal University; Arabia SauditaFil: Al-Dhubiab, B. E.. King Faisal University; Arabia SauditaFil: Attimarad, M. B.. King Faisal University; Arabia SauditaFil: Nair, A.. King Faisal University; Arabia SauditaFil: Sreeharsha, N.. King Faisal University; Arabia SauditaFil: Venugopala, R.. University Of Kwazulu-natal; SudáfricaFil: Deb, P. K.. Philadelphia University; JordaniaFil: Chandrashekharappa, S.. Institute For Stem Cell Biology And Regenerative Medicine; IndiaFil: Khalil, H.. King Faisal University; Arabia SauditaFil: Alwassil, O.. King Saud Bin Abdulaziz University For Health Sciences; Arabia SauditaFil: Abed, S. N.. Philadelphia University; JordaniaFil: Bataineh, Y. A.. Philadelphia University; JordaniaFil: Palenge, R.. Reva University; IndiaFil: Haroun, M.. King Faisal University; Arabia SauditaFil: Pottathil, S.. King Faisal University; Arabia SauditaFil: Girish, M. B.. Reva University; IndiaFil: Akrawi, S. H.. King Faisal University; Arabia SauditaFil: Mohanlall, V.. Durban University Of Technology; Sudáfric

    Experimental Design Approach for Quantitative Expressions of Simultaneous Quantification of Two Binary Formulations Containing Remogliflozin and Gliptins by RP-HPLC

    No full text
    The aim of this study was to develop a fast RP-HPLC method for simultaneous measurement of two antidiabetic formulations (vildagliptin + remogliflozin and teneligliptin + remogliflozin) under identical experimental conditions. Using the Box–Behnken approach and response surface design, the interaction and quadratic influence of three variable parameters, acetonitrile %, pH of the mobile phase, and flow rate, on resolution between the peaks were optimized. To forecast the resolution of peaks (2.7 and 6.5) for the three anti-diabetic medications, the design space with desirability function was used to find the optimal chromatographic conditions. Isocratic elution with 58:42 acetonitrile and phosphate buffer (20 mM KH2PO4, pH adjusted to 4.9 with orthophosphoric acid) over a Zorabx C18 HPLC column with a flow rate of 1.2 mL min−1 separated all three analytes in 2.5 min. In addition, the optimized HPLC process was validated using ICH recommendations. The devised HPLC method’s precision and accuracy were proven by the low percent relative standard deviation (0.60–1.65%), good percentage recovery (98.18–101.50%), and low percentage relative errors (0.20–1.82%). The method’s robustness was also proven by slightly varying the five separate parameters. Finally, the accuracy of the proposed HPLC approach was confirmed using a standard addition method for simultaneous determination of vildagliptin + remogliflozin and teneligliptin + remogliflozin from formulations. Furthermore, the findings demonstrated that experimental design can be successfully used to optimize chromatographic conditions with fewer runs. The devised HPLC method for simultaneous quantification of two binary combinations utilizing the same chromatographic conditions is fast, accurate, precise, and easy, and it might be utilized in laboratories for routine quality control investigations on both formulations
    corecore