56 research outputs found

    Epigenetic mechanisms involved in developmental nutritional programming

    No full text
    The ways in which epigenetic modifications fix the effects of early environmental events, ensuring sustained responses to transient stimuli, which result in modified gene expression patterns and phenotypes later in life, is a topic of considerable interest. This review focuses on recently discovered mechanisms and calls into question prevailing views about the dynamics, position and functions of epigenetic marks. Most epigenetic studies have addressed the long-term effects on a small number of epigenetic marks, at the global or individual gene level, of environmental stressors in humans and animal models. In parallel, increasing numbers of studies based on high-throughput technologies and focusing on humans and mice have revealed additional complexity in epigenetic processes, by highlighting the importance of crosstalk between the different epigenetic marks. A number of studies focusing on the developmental origin of health and disease and metabolic programming have identified links between early nutrition, epigenetic processes and long-term illness. The existence of a self-propagating epigenetic cycle has been demonstrated. Moreover, recent studies demonstrate an obvious sexual dimorphism both for programming trajectories and in response to the same environmental insult. Despite recent progress, we are still far from understanding how, when and where environmental stressors disturb key epigenetic mechanisms. Thus, identifying the original key marks and their changes throughout development during an individual’s lifetime or over several generations remains a challenging issue

    Symposium 2: Modern approaches to nutritional research challenges. Nutritional developmental epigenomics: immediate and long-lasting effects: Nutritional developmental epigenomics: immediate and long-lasting effects

    No full text
    International audienceThe phenotype of an individual is the result of complex interactions between genome, epigenome and current, past and ancestral environment leading to a lifelong remodelling of the epigenomes. The genetic information expression contained in the genome is controlled by labile chromatin-associated epigenetic marks. Epigenetic misprogramming during development is widely thought to have a persistent effect on the health of the offspring and may even be transmitted to the next generation. The epigenome serves as an interface between the environment and the genome. Dietary factors, including folate involved in C1 metabolism, and other social and lifestyle exposures have a profound effect on many aspects of health including ageing and do so, at least partly, through interactions with the genome, which result in altered gene expression with consequences for cell function and health throughout the life course. Depending on the nature and intensity of the environmental insult, the critical spatiotemporal windows and developmental or lifelong processes involved, epigenetic alterations can lead to permanent changes in tissue and organ structure and function or to phenotypic changes that can (or cannot) be reversed using appropriate epigenetic tools. Moreover, the flexibility of epigenetic marks may make it possible for environmental, nutritional and hormonal factors or endocrine disruptors to alter, during a particular spatiotemporal window in a sex-specific manner, the sex-specific methylation or demethylation of specific CpG and/or histone modifications underlying sex-specific expression of a substantial proportion of genes. Moreover, genetic factors, the environment and stochastic events change the epigenetic landscape during the lifetime of an individual. Epigenetic alterations leading to gene expression dysregulation accumulate during ageing and are important in tumorigenesis and age-related diseases. Several encouraging trials suggest that prevention and therapy of age- and lifestyle-related diseases by individualised tailoring to optimal epigenetic diets or drugs are conceivable. However, these interventions will require intense efforts to unravel the complexity of these epigenetic, genetic and environment interactions and to evaluate their potential reversibility with minimal side effects

    Le dimorphisme sexuel au XXIe siĂšcle

    No full text
    A new definition of sexual dimorphism is required. The divergent biology of the sexes is still largely ignored, overshadowed by sociocultural considerations and confined to its hormonal organizational and activational effects, while the genes unequally expressed by the sex chromosomes play an important role much earlier, after conception, to set the stage and throughout life. These different components have independent and parallel effects that can interact in a synergistic or antagonistic manner on differentiation and response processes to trigger or erase sex-specific differences. The epigenetic marks and machinery represent the perfect tools to keep the memory of which sex is ours from the very beginning of life. Within the context of the developmental origin of adult health and diseases (DOHaD), owing to their flexibility to the environment, epigenetic marks also represent a support to archive the effects of environments during development, according to the sex of the parent, in a sex-specific mode. In all tissues, including gonads and brain, different trajectories of genes and pathways are used at the basal levels and to modulate/dictate responses according to sex and gender. It is urgent to emphasize the need to take into consideration this new knowledge and to apply less sex-biased approaches in research, medicine and society, to enhance women health and well-being. A critical review and realization of gender-specific social constraints, an indeniably but slowly on-going process, should allow us to "set free our sex biology" while detracting the delusion of hierarchy of the complex mechanisms involved.En ce dĂ©but du XXIe siĂšcle, une redĂ©finition du dimorphisme sexuel s’impose. Elle se doit d’incorporer conjointement non seulement les hormones sexuelles et le formatage socio culturel spĂ©cifique du genre, mais aussi l’importance des gĂšnes localisĂ©s sur les chromosomes sexuels. Ces diffĂ©rentes composantes ont des effets indĂ©pendants et parallĂšles et qui interagissent dĂšs la conception et tout au long de la vie. Des mĂ©canismes Ă©pigĂ©nĂ©tiques assurent la mise en place de marques spĂ©cifiques du sexe qui modulent l’expression des gĂšnes sans changer leur sĂ©quence. Ces marques reprĂ©sentent une sorte de mĂ©moire pour se « souvenir » de son sexe, mais aussi pour « archiver » les impacts de l’environnement, selon l’expĂ©rience. Dans tous les tissus, ces marques et d’autres Ă  venir, façonnĂ©es en fonction du sexe et du genre au grĂ© de l’environnement, Ă©tablissent des rĂ©seaux de gĂšnes diffĂ©rents chez le mĂąle et la femelle, tant au niveau basal que pour les rĂ©ponses immĂ©diates et futures

    Le modĂšle porcin naturel de retard de croissance pour l’étude de la programmation mĂ©tabolique et l’obĂ©sitĂ©

    No full text
    Le retard de croissance intra-utĂ©rin (RCIU) demeure un problĂšme non rĂ©solu en mĂ©dicine pĂ©rinatale. Le RCIU est reconnu comme une des causes principales de morbiditĂ© pĂ©rinatale et rĂ©sulte, entre autres, d’un mauvais environnement maternel et d’une insufïŹsance placentaire. L’environnement maternel inadĂ©quat met en danger non seulement la vie du nouveau nĂ© mais a des rĂ©percussions Ă  long terme sur la vie du futur adulte. Des Ă©tudes Ă©pidĂ©miologiques ont en effet dĂ©montrĂ© que le RCIU est associĂ© Ă  un risque Ă©levĂ© de dĂ©veloppement de pathologies tardives tels que l’hypertension, le diabĂšte de type 2 et l’obĂ©sitĂ©. Cette association a donnĂ© lieu au concept bien connu de programmation mĂ©tabolique dĂ©veloppĂ© par BARKER en 1994. De maniĂšre intĂ©ressante, les modĂšles animaux mimant la situation chez l’homme sont d’excellents outils pour comprendre les mĂ©canismes gĂ©nĂ©tiques, molĂ©culaires et cellulaires sous jacents. Historiquement les petits rongeurs ont Ă©tĂ© les modĂšles prĂ©dominants d’étude de la programmation fƓtale et plusieurs techniques ont Ă©tĂ© dĂ©veloppĂ©es sur cette espĂšce pour induire expĂ©rimentalement des animaux RCIU. RĂ©cemment, le modĂšle porcin naturel de retard de croissance a Ă©tĂ© reconnu comme intĂ©ressant pour l’étude de la programmation mĂ©tabolique et l’obĂ©sitĂ©. En effet, comme chez le RCIU humain, le porc RCIU prĂ©sente les mĂȘme signes de croissance adaptatrice/compensatrice entrainant une augmentation de l’adipositĂ© au cours de la vie adulte. De plus, les processus de croissance et de dĂ©veloppement des organes du porc sont semblables Ă  ceux dĂ©crits chez l’Homme. En utilisant ce modĂšle, nous avons montrĂ© que quelques jours aprĂšs la naissance les porcs RCIU prĂ©sentent une altĂ©ration de la distribution de l’expression du rĂ©cepteur de la leptine au niveau des noyaux hypothalamiques. Nous avons observĂ© une altĂ©ration de la structure du tissu adipeux chez le porc RCIU avec une grande densitĂ© de petites cellules adipocytaires. AprĂšs le sevrage, les animaux accusent une croissance postnatale rapide entrainant une augmentation de l’adipositĂ© Ă  un Ăąge plus avancĂ© (J 165). Le traitement postnatal par la leptine inverse partiellement le phĂ©notype de l’IUGR en corrigeant la vitesse de croissance, la composition corporelle et rĂ©tablit le poids et la structure de certains organes impliquĂ©s dans la rĂ©gulation mĂ©tabolique. Ces rĂ©sultats pourraient contribuer au dĂ©veloppement d’une nouvelle thĂ©rapie pour la lutte contre la programmation mĂ©tabolique et le dĂ©veloppement Ă  long terme de l’obĂ©sitĂ©

    Sexual dimorphism of hepatic epigenetic marks and machinery in offspring of obese and diabetic mothers fed a control diet during periconceptional/gestation/lactation period

    No full text
    National audienceEarly nutritional events may have an influence on later life health mainly through epigenetic processes.1 In our two- generation mice model, providing obese and diabetic mice with a control diet during the periconceptional/gestation/ lactation period led to a pronounced sex-specific shift from susceptibility to resistance to a high-fat diet (HFD) in the female offspring only.2,3 The aim of this study was to detect sex-specific differences in the expression of candidate genes and epigenetic marks and machinery in the liver of both sexes and both generations. As a key organ for lipid processing and detoxification, liver plays a major role in conditions of chronic lipid oversupply. According to the sex, female (F) or male (M), the generation, first (F1) or second (F2), and diet types, CD or HFD, mice were divided into eight groups (F-F1-CD, F-F1-HFD, M-F1-CD, M-F1-HFD, F-F2-CD, F-F2-HFD, M-F2-CD and M-F2-HFD). Body weight, blood glucose level and blood cholesterol levels were measured. Liver morphology was identified by hematoxylin–eosin staining and oil red O staining. Hepatosteatosis was found to be more common in all HFD groups with adaptation of the liver phenotype in F2 females but not in males, in parallel with obesity and cholesterol levels.4 Global DNA methyla- tion and histone modifications were investigated by LUMA and Western blot analysis, respectively. Interestingly, although no significant difference was found within groups, global DNA methylation level was significantly negatively correlated to steatosis percentage. Using RT-qPCR, sexual dimorphism was observed for the gene expression of 12 genes encoding enzymes of the epigenetic machinery. These marks may help us to understand the sex-specific epigenetic mechanisms of the underlying sex-specific responses to HFD and improve the early life nutritional environment in a sex-specific manner. The author(s) declare that they have no competing interests
    • 

    corecore