52 research outputs found

    Electronic Spectra: Topology, Supersymmetry, and Statistics

    Get PDF
    The description of electronic behavior within solids is a major part of modern Condensed Matter Physics. It is well known that depending on the precise conditions, very diverse phenomena arise from the interacting electrons in the material. To make predictions, it is therefore crucial to understand the electronic structure in a material and to compute its electronic spectrum. This thesis discusses three different aspects of electronic spectra including their numerical solution, each highlighting a distinct approach. In a first part, this thesis presents a numerical solution of many-electron spectra on small clusters of IrO6 octahedra. Such clusters are relevant in the field of strongly coupled matter as they give rise to the elementary building blocks of many topological spin systems, localized j = 1/2 moments. Exact diagonalization of the full many-electron interaction Hamiltonian is utilized to compute multi-particle spectra with respective eigenstates. Subsequently, these eigenstates are further used for numerical calculations of resonant inelastic X-ray scattering (RIXS) amplitudes. The numerical approach is versatile enough to be applied to different examples in this thesis, covering single-site RIXS spectra as in Ba2CeIrO6, materials with local clusters like Ba3InIr2O9 and Ba3Ti3−xIrxO9 and Kitaev materials such as Na2IrO3 and α-RuCl3. In particular, interference effects in the RIXS amplitudes are shown to play a crucial role of determining the nature of delocalized eigenstates in these materials. In a second part, supersymmetry is used to link the spectra of electronic lattice models with bosonic counterparts. To this endeavor, an exact lattice construction is introduced, underlying the supersymmetric identification and providing a visual representation of the supersymmetric matching. As a first instance of the supersymmetric map, it will be shown that models of complex fermions and models of complex bosons are supersymmetrically related if they reside on the two sublattices of a bipartite lattice. Another similar identification is introduced for Majorana fermions on a bipartite lattice which can be related to real boson models on one of the sublattices, allowing for the explicit construction of related mechanical models. As examples of this classical construction, the Kitaev model and a second order topological insulator with floppy corner modes are discussed. In both examples, the supersymmetrically related mechanical model is shown to exhibit the same spectral properties as its quantum mechanical analogue and even inherit topologically protected localized corner modes. In a third part, the electronic spectra of general MoirĂ© materials are investigated at the example of twisted bilayer graphene. This part demonstrates that statistical principles are best suited to describe the vast number of bands originating from the large MoirĂ© unit cells. The statistical description reveals a localization mechanism in momentum space which is investigated and described. The mechanism does not only apply to all parts of the spectrum in twisted bilayer graphene but is also believed to apply to generic MoirĂ© materials. Moreover, exceptions from this general mechanism in twisted bilayer graphene are discussed in detail which turn out to be described by harmonic oscillator states

    Topological Mechanics from Supersymmetry

    Full text link
    In topological mechanics, the identification of a mechanical system's rigidity matrix with an electronic tight-binding model allows to infer topological properties of the mechanical system, such as the occurrence of `floppy' boundary modes, from the associated electronic band structure. Here we introduce an approach to systematically construct topological mechanical systems by an exact supersymmetry (SUSY) that relates the bosonic (mechanical) and fermionic (e.g. electronic) degrees of freedom. As examples we discuss mechanical analogues of the Kitaev honeycomb model and of a second-order topological insulator with floppy corner modes. Our SUSY construction naturally defines hitherto unexplored topological invariants for bosonic (mechanical) systems, such as bosonic Wilson loop operators that are formulated in terms of a SUSY-related fermionic Berry curvature.Comment: 8 pages, 6 figure

    Supersymmetry on the lattice: Geometry, Topology, and Spin Liquids

    Full text link
    In quantum mechanics, supersymmetry (SUSY) posits an equivalence between two elementary degrees of freedom, bosons and fermions. Here we show how this fundamental concept can be applied to connect bosonic and fermionic lattice models in the realm of condensed matter physics, e.g., to identify a variety of (bosonic) phonon and magnon lattice models which admit topologically nontrivial free fermion models as superpartners. At the single-particle level, the bosonic and the fermionic models that are generated by the SUSY are isospectral except for zero modes, such as flat bands, whose existence is undergirded by the Witten index of the SUSY theory. We develop a unifying framework to formulate these SUSY connections in terms of general lattice graph correspondences and discuss further ramifications such as the definition of supersymmetric topological invariants for generic bosonic systems. Notably, a Hermitian form of the supercharge operator, the generator of the SUSY, can itself be interpreted as a hopping Hamiltonian on a bipartite lattice. This allows us to identify a wide class of interconnected lattices whose tight-binding Hamiltonians are superpartners of one another or can be derived via squaring or square-rooting their energy spectra all the while preserving band topology features. We introduce a five-fold way symmetry classification scheme of these SUSY lattice correspondences, including cases with a non-zero Witten index, based on a topological classification of the underlying Hermitian supercharge operator. These concepts are illustrated for various explicit examples including frustrated magnets, Kitaev spin liquids, and topological superconductors.Comment: 37 pages, 27 figure

    The greatest catch:Big game fishing for mRNA-bound proteins

    Get PDF
    Purification of proteins cross-linked to mRNAs has identified 800 mRNA-binding proteins and their characteristics

    Nuclear matrix protein Matrin3 regulates alternative splicing and forms overlapping regulatory networks with PTB.

    Get PDF
    Matrin3 is an RNA- and DNA-binding nuclear matrix protein found to be associated with neural and muscular degenerative diseases. A number of possible functions of Matrin3 have been suggested, but no widespread role in RNA metabolism has yet been clearly demonstrated. We identified Matrin3 by its interaction with the second RRM domain of the splicing regulator PTB. Using a combination of RNAi knockdown, transcriptome profiling and iCLIP, we find that Matrin3 is a regulator of hundreds of alternative splicing events, principally acting as a splicing repressor with only a small proportion of targeted events being co-regulated by PTB. In contrast to other splicing regulators, Matrin3 binds to an extended region within repressed exons and flanking introns with no sharply defined peaks. The identification of this clear molecular function of Matrin3 should help to clarify the molecular pathology of ALS and other diseases caused by mutations of Matrin3.We thank Nejc Haberman (UCL) for assisting in the generation of the splicing maps and preparation of the iCLIP data. This work was supported by Wellcome Trust programme grants to CWJS (077877 and 092900), and by grants to EE and NB BIO2011-23920 and RNAREG (CSD2009-00080) from the Spanish Government and by the Sandra Ibarra Foundation for Cancer (FSI2013). JA was supported by a Boehringer Ingelheim Fonds studentship.This is the final version of the article. It first appeared from EMBO Press/Wiley via http://dx.doi.org/10.15252/embj.20148985

    Intergenic RNA mainly derives from nascent transcripts of known genes

    Get PDF
    BACKGROUND Eukaryotic genomes undergo pervasive transcription, leading to the production of many types of stable and unstable RNAs. Transcription is not restricted to regions with annotated gene features but includes almost any genomic context. Currently, the source and function of most RNAs originating from intergenic regions in the human genome remain unclear. RESULTSWe hypothesize that many intergenic RNAs can be ascribed to the presence of as-yet unannotated genes or the "fuzzy" transcription of known genes that extends beyond the annotated boundaries. To elucidate the contributions of these two sources, we assemble a dataset of more than 2.5 billion publicly available RNA-seq reads across 5 human cell lines and multiple cellular compartments to annotate transcriptional units in the human genome. About 80% of transcripts from unannotated intergenic regions can be attributed to the fuzzy transcription of existing genes; the remaining transcripts originate mainly from putative long non-coding RNA loci that are rarely spliced. We validate the transcriptional activity of these intergenic RNAs using independent measurements, including transcriptional start sites, chromatin signatures, and genomic occupancies of RNA polymerase II in various phosphorylation states. We also analyze the nuclear localization and sensitivities of intergenic transcripts to nucleases to illustrate that they tend to be rapidly degraded either on-chromatin by XRN2 or off-chromatin by the exosome. CONCLUSIONSWe provide a curated atlas of intergenic RNAs that distinguishes between alternative processing of well-annotated genes from independent transcriptional units based on the combined analysis of chromatin signatures, nuclear RNA localization, and degradation pathways

    The transcriptional landscape of endogenous retroelements delineates esophageal adenocarcinoma subtypes

    Get PDF
    Most cancer types exhibit aberrant transcriptional activity, including derepression of retrotransposable elements (RTEs). However, the degree, specificity and potential consequences of RTE transcriptional activation may differ substantially among cancer types and subtypes. Representing one extreme of the spectrum, we characterize the transcriptional activity of RTEs in cohorts of esophageal adenocarcinoma (EAC) and its precursor Barrett's esophagus (BE) from the OCCAMS (Oesophageal Cancer Clinical and Molecular Stratification) consortium, and from TCGA (The Cancer Genome Atlas). We found exceptionally high RTE inclusion in the EAC transcriptome, driven primarily by transcription of genes incorporating intronic or adjacent RTEs, rather than by autonomous RTE transcription. Nevertheless, numerous chimeric transcripts straddling RTEs and genes, and transcripts from stand-alone RTEs, particularly KLF5- and SOX9-controlled HERVH proviruses, were overexpressed specifically in EAC. Notably, incomplete mRNA splicing and EAC-characteristic intronic RTE inclusion was mirrored by relative loss of the respective fully-spliced, functional mRNA isoforms, consistent with compromised cellular fitness. Defective RNA splicing was linked with strong transcriptional activation of a HERVH provirus on Chr Xp22.32 and defined EAC subtypes with distinct molecular features and prognosis. Our study defines distinguishable RTE transcriptional profiles of EAC, reflecting distinct underlying processes and prognosis, thus providing a framework for targeted studies.</p

    Tumor beta2-microglobulin and HLA-A expression is increased by immunotherapy and can predict response to CIT in association with other biomarkers

    Get PDF
    BackgroundDownregulation of MHC class I expression and/or defects in the antigen presentation pathways are commonly reported in human cancers. Numerous studies previously have explored extensively the molecular mechanisms that underlie HLA-class I and Beta2-Microglobulin (B2M) downregulation. However, the techniques presently available to detect expression of MHC class I proteins lack the robustness, specificity and sensitivity needed for systematic integration and analysis in clinical trials. Furthermore, the dynamics of HLA-class I and B2M expression have not been comprehensively studied as a potential biomarker for immunotherapy.MethodsUsing novel, validated, immunohistochemistry (IHC)-based methods for quantifying B2M and HLA-A in tumor samples from diverse cancer types, we have determined loss of B2M and HLA-A proteins in 336 archived, primary specimens and 329 biopsies from metastatic patients collected during Roche-sponsored Phase 1 clinical trials investigating novel immunotherapy candidates as monotherapy or in combination with CPI.ResultsUp to 56% of cases with B2M or HLA-A loss were noted in the investigated tumor types. The frequency of loss was dependent on indication and stage of disease and revealed heterogeneous expression patterns across patients. B2M and HLA-A loss was increased in metastatic lesions compared to primary tumors, indicating selection of MHC class I low clones in metastatic and refractory tumor cells. High on-treatment B2M expression correlated with successful clinical outcome (RECIST), while high baseline B2M did not. A treatment-induced increase of B2M expression was noted in most of the patients with low B2M levels at baseline. The triple biomarker combination of B2M, CD8 and PDL1 strongly improved response prediction to cancer immunotherapy.ConclusionOur results indicate that B2M and HLA-A loss occurs frequently in tumors and is reversed in most instances following immunotherapy which supports the conclusion that MHC class I loss is not the dominant resistance mechanism to CPI treatment. This investigation reveals a highly dynamic expression of HLA-A and B2M in tumors affected by indication, metastatic status, immunophenotype and immunotherapy treatment. Baseline expression levels of B2M on tumors may be of utility as a constituent of a biomarker panel used for selecting patients for immunotherapy clinical trials

    Identification of potential therapeutic targets in prostate cancer through a cross-species approach.

    Get PDF
    Genetically engineered mouse models of cancer can be used to filter genome-wide expression datasets generated from human tumours and to identify gene expression alterations that are functionally important to cancer development and progression. In this study, we have generated RNAseq data from tumours arising in two established mouse models of prostate cancer, PB-Cre/PtenloxP/loxP and p53loxP/loxPRbloxP/loxP, and integrated this with published human prostate cancer expression data to pinpoint cancer-associated gene expression changes that are conserved between the two species. To identify potential therapeutic targets, we then filtered this information for genes that are either known or predicted to be druggable. Using this approach, we revealed a functional role for the kinase MELK as a driver and potential therapeutic target in prostate cancer. We found that MELK expression was required for cell survival, affected the expression of genes associated with prostate cancer progression and was associated with biochemical recurrence

    Heteromeric RNP Assembly at LINEs Controls Lineage-Specific RNA Processing.

    Get PDF
    Long mammalian introns make it challenging for the RNA processing machinery to identify exons accurately. We find that LINE-derived sequences (LINEs) contribute to this selection by recruiting dozens of RNA-binding proteins (RBPs) to introns. This includes MATR3, which promotes binding of PTBP1 to multivalent binding sites within LINEs. Both RBPs repress splicing and 3' end processing within and around LINEs. Notably, repressive RBPs preferentially bind to evolutionarily young LINEs, which are located far from exons. These RBPs insulate the LINEs and the surrounding intronic regions from RNA processing. Upon evolutionary divergence, changes in RNA motifs within LINEs lead to gradual loss of their insulation. Hence, older LINEs are located closer to exons, are a common source of tissue-specific exons, and increasingly bind to RBPs that enhance RNA processing. Thus, LINEs are hubs for the assembly of repressive RBPs and also contribute to the evolution of new, lineage-specific transcripts in mammals. VIDEO ABSTRACT
    • 

    corecore