47 research outputs found

    A Solve-RD ClinVar-based reanalysis of 1522 index cases from ERN-ITHACA reveals common pitfalls and misinterpretations in exome sequencing

    Get PDF
    Purpose Within the Solve-RD project (https://solve-rd.eu/), the European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies aimed to investigate whether a reanalysis of exomes from unsolved cases based on ClinVar annotations could establish additional diagnoses. We present the results of the “ClinVar low-hanging fruit” reanalysis, reasons for the failure of previous analyses, and lessons learned. Methods Data from the first 3576 exomes (1522 probands and 2054 relatives) collected from European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies was reanalyzed by the Solve-RD consortium by evaluating for the presence of single-nucleotide variant, and small insertions and deletions already reported as (likely) pathogenic in ClinVar. Variants were filtered according to frequency, genotype, and mode of inheritance and reinterpreted. Results We identified causal variants in 59 cases (3.9%), 50 of them also raised by other approaches and 9 leading to new diagnoses, highlighting interpretation challenges: variants in genes not known to be involved in human disease at the time of the first analysis, misleading genotypes, or variants undetected by local pipelines (variants in off-target regions, low quality filters, low allelic balance, or high frequency). Conclusion The “ClinVar low-hanging fruit” analysis represents an effective, fast, and easy approach to recover causal variants from exome sequencing data, herewith contributing to the reduction of the diagnostic deadlock

    Expression and mutation analysis of BRUNOL3, a candidate gene for heart and thymus developmental defects associated with partial monosomy 10p.

    No full text
    Partial monosomy 10p is a rare chromosomal aberration. Patients often show symptoms of the DiGeorge/velocardiofacial syndrome spectrum. The phenotype is the result of haploinsufficiency of at least two regions on 10p, the HDR1 region associated with hypoparathyroidism, sensorineural deafness, and renal defects (HDR syndrome) and the more proximal region DGCR2 responsible for heart defects and thymus hypoplasia/aplasia. While GATA3 was identified as the disease causing gene for HDR syndrome, no genes have been identified thus far for the symptoms associated with DGCR2 haploinsufficiency. We constructed a. deletion map of partial monosomy 10p patients and narrowed the critical region DGCR2 to about 300 kb. The genomic draft sequence of this region contains only one known gene, BRUNOL3 (NAPOR, CUGBP2, ETR3). In situ hybridization of human embryos and fetuses revealed as well as in other tissues a strong expression of BRUNOL3 in thymus during different developmental stages. BRUNOL3 appears to be an important factor for thymus development and is therefore a candidate gene for the thymus hypoplasia/aplasia seen in partial monosomy 10p patients. We did not find BRUNOL3 mutations in 92 DiGeorge syndrome-like patients without chromosomal deletions and in 8 parents with congenital heart defect children

    L-carnitine is synthesized in the human fetal-placental unit: potential roles in placental and fetal metabolism

    No full text
    Carnitine plays an indispensable role in fatty acid oxidation. Previous studies revealed that fetal carnitine is derived from the mother via transplacental transfer. Recent studies demonstrated the presence and importance of an active fatty acid oxidation system in the human placenta and in the human fetus. In view of these findings we decided to study carnitine metabolism in the fetal-placental unit by measuring carnitine metabolites, intermediary metabolites of carnitine biosynthesis, as well as the activity of carnitine biosynthesis enzymes in human term placenta, cord blood and selected embryonic and fetal tissues (5-20 weeks of development). Placenta contained low but detectable activity of gamma-butyrobetaine dioxygenase. This enzyme, which was considered to be expressed only in kidney, liver and brain, catalyzes the last step in the carnitine biosynthesis pathway. In addition, our results show that human fetal kidney, liver and spinal cord already have the capacity to synthesize carnitine. The ability of the placenta and fetus to synthesize carnitine suggests that in circumstances when maternal carnitine supply is limited, carnitine biosynthesis by the fetal-placental unit may supply sufficient carnitine for placental and fetal metabolis

    Pitchfork regulates primary cilia disassembly and left-right asymmetry.

    Get PDF
    A variety of developmental disorders have been associated with ciliary defects, yet the controls that govern cilia disassembly are largely unknown. Here we report a mouse embryonic node gene, which we named Pitchfork (Pifo). Pifo associates with ciliary targeting complexes and accumulates at the basal body during cilia disassembly. Haploinsufficiency causes a unique node cilia duplication phenotype, left-right asymmetry defects, and heart failure. This phenotype is likely relevant in humans, because we identified a heterozygous R80K PIFO mutation in a fetus with situs inversus and cystic liver and kidneys, and in patient with double-outflow right ventricle. We show that PIFO, but not R80K PIFO, is sufficient to activate Aurora A, a protooncogenic kinase that induces cilia retraction, and that Pifo/PIFO mutation causes cilia retraction, basal body liberation, and overreplication defects. Thus, the observation of a disassembly phenotype in vivo provides an entry point to understand and categorize ciliary disease

    The phenotype of MEGF8-related Carpenter syndrome (CRPT2) is refined through the identification of eight new patients

    Get PDF
    \ua9 The Author(s) 2024. Carpenter syndrome (CRPTS) is a rare autosomal recessive condition caused by biallelic variants in genes that encode negative regulators of hedgehog signalling (RAB23 [CRPT1] or, more rarely, MEGF8 [CRPT2]), and is characterised by craniosynostosis, polysyndactyly, and other congenital abnormalities. We describe a further six families comprising eight individuals with MEGF8-associated CRPT2, increasing the total number of reported cases to fifteen, and refine the phenotype of CRPT2 compared to CRPT1. The core features of craniosynostosis, polysyndactyly and (in males) cryptorchidism are almost universal in both CRPT1 and CRPT2. However, laterality defects are present in nearly half of those with MEGF8-associated CRPT2, but are rare in RAB23-associated CRPT1. Craniosynostosis in CRPT2 commonly involves a single midline suture in comparison to the multi-suture craniosynostosis characteristic of CRPT1. No patient to date has carried two MEGF8 gene alterations that are both predicted to lead to complete loss-of-function, suggesting that a variable degree of residual MEGF8 activity may be essential for viability and potentially contributing to variable phenotypic severity. These data refine the phenotypic spectrum of CRPT2 in comparison to CRPT1 and more than double the number of likely pathogenic MEGF8 variants in this rare disorder

    The Meckel-Gruber Syndrome proteins MKS1 and meckelin interact and are required for primary cilium formation.

    No full text
    Meckel-Gruber syndrome (MKS) is an autosomal recessive lethal malformation syndrome characterized by renal cystic dysplasia, central nervous system malformations (typically, posterior occipital encephalocele), and hepatic developmental defects. Two MKS genes, MKS1 and MKS3, have been identified recently. The present study describes the cellular, sub-cellular and functional characterization of the novel proteins, MKS1 and meckelin, encoded by these genes. In situ hybridization studies for MKS3 in early human embryos showed transcript localizations in agreement with the tissue phenotype of MKS patients. Both MKS proteins predominantly localized to epithelial cells, including proximal renal tubules and biliary epithelial cells. MKS1 localized to basal bodies, while meckelin localized both to the primary cilium and to the plasma membrane in ciliated cell-lines and primary cells. Meckelin protein with the Q376P missense mutation was unable to localize at the cell membrane. siRNA-mediated reduction of Mks1 and Mks3 expression in a ciliated epithelial cell-line blocked centriole migration to the apical membrane and consequent formation of the primary cilium. Co-immunoprecipitation experiments show that wild-type meckelin and MKS1 interact and, in three-dimensional tissue culture assays, epithelial branching morphogenesis was severely impaired. These results suggest that MKS proteins mediate a fundamental developmental stage of ciliary formation and epithelial morphogenesis

    Embryonic expression of the human MID1 gene and its mutations in Opitz syndrome

    No full text
    Opitz syndrome (G/BBB syndrome, MIM145410, and MIM300000) is a midline congenital malformation characterised by hypertelorism, hypospadias and oesophagolaryngotracheal defects leading to swallowing difficulties and hoarse voice. This condition is genetically heterogeneous with an X-linked recessive form mapped to Xp22.3 and at least one autosomal dominant form mapped to chromosome 22q11.2. Recently, mutations in MID1 have been identified in the X-linked form of the disease but the gene for the autosomal dominant form on 22q11 remains unknown. Here we report on MID1 mutations screening in a series of 14 patients with Opitz syndrome and the MID1 expression pattern in human embryos using hybridisation in situ. Finally, we investigated the contribution of chromosome X-inactivation studies to identify the X-linked form of the disease. Six MID1 mutations were identified in our series. All mutations were novel except the R495X mutation previously reported in three unrelated patients. We report heart and hindbrain expression of MID1 during early human development. Obligate carrier mothers showed a random pattern of X-inactivation. Vermis hypoplasia or agenesis was frequently present (4/9) in patients with MID1 mutation. The heart and hindbrain expression of MID1 during early human development further supports the view that heart defects and vermis hypoplasia or agenesis are features to be included in the malformative spectrum of the syndrome. Finally, the study of X-inactivation pattern in women does not help discrimination between X-linked and autosomal forms of the disease
    corecore