69 research outputs found

    Autonomous Tissue Retraction in Robotic Assisted Minimally Invasive Surgery – A Feasibility Study

    Get PDF
    In this letter, we describe a novel framework for planning and executing semi-autonomous tissue retraction in minimally invasive robotic surgery. The approach is aimed at removing tissue flaps or connective tissue from the surgical area autonomously, thus exposing the underlying anatomical structures. First, a deep neural network is used to analyse the endoscopic image and detect candidate tissue flaps obstructing the surgical field. A procedural algorithm for planning and executing the retraction gesture is then developed from extended discussions with clinicians. Experimental validation, carried out on a DaVinci Research Kit, shows an average 25% increase of the visible background after retraction. Another significant contribution of this letter is a dataset containing 1,080 labelled surgical stereo images and the associated depth maps, representing tissue flaps in different scenarios. The work described in this letter is a fundamental step towards the autonomous execution of tissue retraction, and the first example of simultaneous use of deep learning and procedural algorithms. The same framework could be applied to a wide range of autonomous tasks, such as debridement and placement of laparoscopic clips

    A Comparative Study of Spatio-Temporal U-Nets for Tissue Segmentation in Surgical Robotics

    Get PDF
    In surgical robotics, the ability to achieve high levels of autonomy is often limited by the complexity of the surgical scene. Autonomous interaction with soft tissues requires machines able to examine and understand the endoscopic video streams in real-time and identify the features of interest. In this work, we show the first example of spatio-temporal neural networks, based on the U-Net, aimed at segmenting soft tissues in endoscopic images. The networks, equipped with Long Short-Term Memory and Attention Gate cells, can extract the correlation between consecutive frames in an endoscopic video stream, thus enhancing the segmentation’s accuracy with respect to the standard U-Net. Initially, three configurations of the spatiotemporal layers are compared to select the best architecture. Afterwards, the parameters of the network are optimised and finally the results are compared with the standard U-Net. An accuracy of 83:77%±2:18% and a precision of 78:42%±7:38% are achieved by implementing both Long Short Term Memory (LSTM) convolutional layers and Attention Gate blocks. The results, although originated in the context of surgical tissue retraction, could benefit many autonomous tasks such as ablation, suturing and debridement

    Acromegaly

    Get PDF
    Acromegaly is an acquired disorder related to excessive production of growth hormone (GH) and characterized by progressive somatic disfigurement (mainly involving the face and extremities) and systemic manifestations. The prevalence is estimated at 1:140,000–250,000. It is most often diagnosed in middle-aged adults (average age 40 years, men and women equally affected). Due to insidious onset and slow progression, acromegaly is often diagnosed four to more than ten years after its onset. The main clinical features are broadened extremities (hands and feet), widened thickened and stubby fingers, and thickened soft tissue. The facial aspect is characteristic and includes a widened and thickened nose, prominent cheekbones, forehead bulges, thick lips and marked facial lines. The forehead and overlying skin is thickened, sometimes leading to frontal bossing. There is a tendency towards mandibular overgrowth with prognathism, maxillary widening, tooth separation and jaw malocclusion. The disease also has rheumatologic, cardiovascular, respiratory and metabolic consequences which determine its prognosis. In the majority of cases, acromegaly is related to a pituitary adenoma, either purely GH-secreting (60%) or mixed. In very rare cases, acromegaly is due to ectopic secretion of growth-hormone-releasing hormone (GHRH) responsible for pituitary hyperplasia. The clinical diagnosis is confirmed biochemically by an increased serum GH concentration following an oral glucose tolerance test (OGTT) and by detection of increased levels of insulin-like growth factor-I (IGF-I). Assessment of tumor volume and extension is based on imaging studies. Echocardiography and sleep apnea testing are used to determine the clinical impact of acromegaly. Treatment is aimed at correcting (or preventing) tumor compression by excising the disease-causing lesion, and at reducing GH and IGF-I levels to normal values. Transsphenoidal surgery is often the first-line treatment. When surgery fails to correct GH/IGF-I hypersecretion, medical treatment with somatostatin analogs and/or radiotherapy can be used. The GH antagonist (pegvisomant) is used in patients that are resistant to somatostatin analogs. Adequate hormonal disease control is achieved in most cases, allowing a life expectancy similar to that of the general population. However, even if patients are cured or well-controlled, sequelae (joint pain, deformities and altered quality of life) often remain

    Arousal of Cancer-Associated Stroma: Overexpression of Palladin Activates Fibroblasts to Promote Tumor Invasion

    Get PDF
    Background: Cancer-associated fibroblasts, comprised of activated fibroblasts or myofibroblasts, are found in the stroma surrounding solid tumors. These myofibroblasts promote invasion and metastasis of cancer cells. Mechanisms regulating the activation of the fibroblasts and the initiation of invasive tumorigenesis are of great interest. Upregulation of the cytoskeletal protein, palladin, has been detected in the stromal myofibroblasts surrounding many solid cancers and in expression screens for genes involved in invasion. Using a pancreatic cancer model, we investigated the functional consequence of overexpression of exogenous palladin in normal fibroblasts in vitro and its effect on the early stages of tumor invasion. Principal Findings: Palladin expression in stromal fibroblasts occurs very early in tumorigenesis. In vivo, concordant expression of palladin and the myofibroblast marker, alpha smooth muscle actin (a-SMA), occurs early at the dysplastic stages in peri-tumoral stroma and progressively increases in pancreatic tumorigenesis. In vitro introduction of exogenous 90 kD palladin into normal human dermal fibroblasts (HDFs) induces activation of stromal fibroblasts into myofibroblasts as marked by induction of a-SMA and vimentin, and through the physical change of cell morphology. Moreover, palladin expression in the fibroblasts enhances cellular migration, invasion through the extracellular matrix, and creation of tunnels through which cancer cells can follow. The fibroblast invasion and creation of tunnels results from the development o

    Clinical efficacy and safety results for dose escalation of somatostatin receptor ligands in patients with acromegaly: a literature review

    Get PDF
    Acromegaly is a rare disease with a multifaceted clinical presentation. In 90–95% of patients with acromegaly, the disease is caused by a growth hormone (GH)-secreting pituitary adenoma with elevated GH levels that ultimately induce excessive hepatic secretion of insulin-like growth factor-1 (IGF-1). Somatostatin receptor ligands (SRLs) are considered the standard medical choice for the treatment of acromegaly, and normalization of GH and IGF-1 is attainable with effective therapy. This review aims to summarize the literature relative to SRL dose escalation therapy in patients with acromegaly. A United States National Library of Medicine PubMed search of SRL’s was conducted using the following search terms: ((((LAR) OR ATG) OR octreotide) OR lanreotide Autogel) AND acromegaly. Related articles in non peer-reviewed journals were excluded. The rationale and benefits of SRL dose optimization therapy were investigated with emphasis on describing the clinical recognition, treatment, and management of patients with acromegaly. We found that dose escalation could provide additional biochemical control of acromegaly in patients who are inadequately controlled with conventional starting doses of octreotide LAR and lanreotide Autogel®. Furthermore, patients should routinely have their GH and IGF-1 levels closely monitored and their SRL dose increased or decreased thereafter according to individual response

    Prolactinomas, Cushing's disease and acromegaly: debating the role of medical therapy for secretory pituitary adenomas

    Get PDF
    Pituitary adenomas are associated with a variety of clinical manifestations resulting from excessive hormone secretion and tumor mass effects, and require a multidisciplinary management approach. This article discusses the treatment modalities for the management of patients with a prolactinoma, Cushing's disease and acromegaly, and summarizes the options for medical therapy in these patients
    corecore