4 research outputs found
Π‘ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΡΠ°ΡΡ ΠΎΠ΄Π° ΡΠΎΠΏΠ»ΠΈΠ²Π° ΠΈ ΡΡΠΎΠ²Π½Ρ Π²ΡΠ±ΡΠΎΡΠΎΠ² ΠΏΡΠΈ ΠΎΠ±ΡΡΠ½ΠΎΠΉ ΠΈ Π³ΠΈΠ±ΡΠΈΠ΄Π½ΡΡ ΠΊΠΎΠ½ΡΠΈΠ³ΡΡΠ°ΡΠΈΡΡ ΡΡΠ°Π½ΡΠΌΠΈΡΡΠΈΠΉ c ΡΡΠ΅ΡΠΎΠΌ ΡΠΈΠΊΠ»ΠΎΠ² Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΈ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ Π³ΠΈΠ±ΡΠΈΠ΄ΠΈΠ·Π°ΡΠΈΠΈ
Hybrid electric powertrains in automotive applications aim to improve emissions and fuel economy with respect to conventional internal combustion engine vehicles. Variety of design scenarios need to be addressed in designing a hybrid electric vehicle to achieve desired design objectives such as fuel consumption and exhaust gas emissions. The work in this paper presents an analysis of the design objectives for an automobile powertrain with respect to different design scenarios, i. e. target drive cycle and degree of hybridization. Toward these ends, four powertrain configuration models (i. e. internal combustion engine, series, parallel and complex hybrid powertrain configurations) of a small vehicle (motorized three-wheeler) are developed using Model Advisor software and simulated with varied drive cycles and degrees of hybridization. Firstly, the impact of vehicle power control strategy and operational characteristics of the different powertrain configurations are investigated with respect to exhaust gas emissions and fuel consumption. Secondly, the drive cycles are scaled according to kinetic intensity and the relationship between fuel consumption and drive cycles is assessed. Thirdly, three fuel consumption models are developed so that fuel consumption values for a real-world drive cycle may be predicted in regard to each powertrain configuration. The results show that when compared with a conventional powertrain fuel consumption is lower in hybrid vehicles. This work led to the surprisingly result showing higher CO emission levels with hybrid vehicles. Furthermore, fuel consumption of all four powertrains showed a strong correlation with kinetic intensity values of selected drive cycles. It was found that with varied drive cycles the average fuel advantage for each was: series 23 %, parallel 21 %, and complex hybrids 33 %, compared to an IC engine powertrain. The study reveals that performance of hybrid configurations vary significantly with drive cycle and degree of hybridization. The paper also suggests future areas of study
Π‘ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΡΠ°ΡΡ ΠΎΠ΄Π° ΡΠΎΠΏΠ»ΠΈΠ²Π° ΠΈ ΡΡΠΎΠ²Π½Ρ Π²ΡΠ±ΡΠΎΡΠΎΠ² ΠΏΡΠΈ ΠΎΠ±ΡΡΠ½ΠΎΠΉ ΠΈ Π³ΠΈΠ±ΡΠΈΠ΄Π½ΡΡ ΠΊΠΎΠ½ΡΠΈΠ³ΡΡΠ°ΡΠΈΡΡ ΡΡΠ°Π½ΡΠΌΠΈΡΡΠΈΠΉ c ΡΡΠ΅ΡΠΎΠΌ ΡΠΈΠΊΠ»ΠΎΠ² Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΈ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ Π³ΠΈΠ±ΡΠΈΠ΄ΠΈΠ·Π°ΡΠΈΠΈ
Hybrid electric powertrains in automotive applications aim to improve emissions and fuel economy with respect to conventional internal combustion engine vehicles. Variety of design scenarios need to be addressed in designing a hybrid electric vehicle to achieve desired design objectives such as fuel consumption and exhaust gas emissions. The work in this paper presents an analysis of the design objectives for an automobile powertrain with respect to different design scenarios, i. e. target drive cycle and degree of hybridization. Toward these ends, four powertrain configuration models (i. e. internal combustion engine, series, parallel and complex hybrid powertrain configurations) of a small vehicle (motorized three wheeler) are developed using Model Advisor software and simulated with varied drive cycles and degrees of hybridization. Firstly, the impact of vehicle power control strategy and operational characteristics of the different powertrain configurations are investigated with respect to exhaust gas emissions and fuel consumption. Secondly, the drive cycles are scaled according to kinetic intensity and the relationship between fuel consumption and drive cycles is assessed. Thirdly, three fuel consumption models are developed so that fuel consumption values for a real-world drive cycle may be predicted in regard to each powertrain configuration. The results show that when compared with a conventional powertrain fuel consumption is lower in hybrid vehicles. This work led to the surprisingly result showing higher CO emission levels with hybrid vehicles. Furthermore, fuel consumption of all four powertrains showed a strong correlation with kinetic intensity values of selected drive cycles. It was found that with varied drive cycles the average fuel advantage for each was: series 23 %, parallel 21 %, and complex hybrids 33 %, compared to an IC engine powertrain. The study reveals that performance of hybrid configurations vary significantly with drive cycle and degree of hybridization. The paper also suggests future areas of study.ΠΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π³ΠΈΠ±ΡΠΈΠ΄Π½ΡΡ
ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΠ°Π½ΡΠΌΠΈΡΡΠΈΠΉ Π² Π°Π²ΡΠΎΠΌΠΎΠ±ΠΈΠ»ΡΠ½ΠΎΠΉ ΠΏΡΠΎΠΌΡΡΠ»Π΅Π½Π½ΠΎΡΡΠΈ β ΡΡΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ Π²ΡΠ±ΡΠΎΡΠΎΠ² ΠΈ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΠΈ ΡΠΎΠΏΠ»ΠΈΠ²Π° Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ Ρ ΠΎΠ±ΡΡΠ½ΡΠΌΠΈ Π°Π²ΡΠΎΠΌΠΎΠ±ΠΈΠ»ΡΠΌΠΈ Ρ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Π΅ΠΌ Π²Π½ΡΡΡΠ΅Π½Π½Π΅Π³ΠΎ ΡΠ³ΠΎΡΠ°Π½ΠΈΡ. ΠΠ»Ρ Π΄ΠΎΡΡΠΈΠΆΠ΅Π½ΠΈΡ ΠΆΠ΅Π»Π°Π΅ΠΌΡΡ
ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΠΏΡΠΈ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ Π³ΠΈΠ±ΡΠΈΠ΄Π½ΠΎΠ³ΠΎ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠΎΠ±ΠΈΠ»Ρ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠ΅ Π²Π°ΡΠΈΠ°Π½ΡΡ, ΡΡΠΈΡΡΠ²Π°Ρ ΠΏΡΠΈ ΡΡΠΎΠΌ ΡΠ°ΡΡ
ΠΎΠ΄ ΡΠΎΠΏΠ»ΠΈΠ²Π° ΠΈ Π²ΡΠ±ΡΠΎΡΡ Π²ΡΡ
Π»ΠΎΠΏΠ½ΡΡ
Π³Π°Π·ΠΎΠ². Π ΡΡΠ°ΡΡΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ Π°Π½Π°Π»ΠΈΠ· ΠΏΡΠΎΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π°Π²ΡΠΎΠΌΠΎΠ±ΠΈΠ»ΡΠ½ΠΎΠΉ ΡΡΠ°Π½ΡΠΌΠΈΡΡΠΈΠΈ, ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠ΅ Π²Π°ΡΠΈΠ°Π½ΡΡ ΠΈ ΡΠΈΡΡΠ°ΡΠΈΠΈ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, ΡΠ΅Π»Π΅Π²ΠΎΠΉ ΡΠΈΠΊΠ» Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΈ ΡΡΠ΅ΠΏΠ΅Π½Ρ Π³ΠΈΠ±ΡΠΈΠ΄ΠΈΠ·Π°ΡΠΈΠΈ. PΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Ρ ΡΠ΅ΡΡΡΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΊΠΎΠ½ΡΠΈΠ³ΡΡΠ°ΡΠΈΠΈ ΡΡΠ°Π½ΡΠΌΠΈΡΡΠΈΠΈ (Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ Π²Π½ΡΡΡΠ΅Π½Π½Π΅Π³ΠΎ ΡΠ³ΠΎΡΠ°Π½ΠΈΡ, ΡΠ΅ΡΠΈΠΉΠ½Π°Ρ, ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½Π°Ρ ΠΈ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½Π°Ρ ΠΊΠΎΠ½ΡΠΈΠ³ΡΡΠ°ΡΠΈΠΈ Π³ΠΈΠ±ΡΠΈΠ΄Π½ΠΎΠΉ ΡΡΠ°Π½ΡΠΌΠΈΡΡΠΈΠΈ) Π΄Π»Ρ Π½Π΅Π±ΠΎΠ»ΡΡΠΎΠ³ΠΎ ΡΡΠ°Π½ΡΠΏΠΎΡΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅Π΄ΡΡΠ²Π° (ΠΌΠΎΡΠΎΡΠΈΠ·ΠΎΠ²Π°Π½Π½ΡΠΉ ΡΡΠ΅Ρ
ΠΊΠΎΠ»Π΅ΡΠ½ΡΠΉ Π°Π²ΡΠΎΠΌΠΎΠ±ΠΈΠ»Ρ) Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠ½ΠΎΠ³ΠΎ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠ΅Π½ΠΈΡ Model Advisor. ΠΠ΅ΡΠ΅ΡΠΈΡΠ»Π΅Π½Π½ΡΠ΅ ΠΊΠΎΠ½ΡΠΈΠ³ΡΡΠ°ΡΠΈΠΈ ΡΡΠ°Π½ΡΠΌΠΈΡΡΠΈΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π»ΠΈΡΡ Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠΌΠΈ ΡΠΈΠΊΠ»Π°ΠΌΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΈ ΡΠ°Π·Π½ΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΡΡ Π³ΠΈΠ±ΡΠΈΠ΄ΠΈΠ·Π°ΡΠΈΠΈ. ΠΠΎ-ΠΏΠ΅ΡΠ²ΡΡ
, Π²Π»ΠΈΡΠ½ΠΈΠ΅ ΡΡΡΠ°ΡΠ΅Π³ΠΈΠΈ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΌΠΎΡΠ½ΠΎΡΡΡΡ ΡΡΠ°Π½ΡΠΏΠΎΡΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅Π΄ΡΡΠ²Π° ΠΈ ΡΠΊΡΠΏΠ»ΡΠ°ΡΠ°ΡΠΈΠΎΠ½Π½ΡΡ
Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ Π²ΡΠ΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΡ
ΠΊΠΎΠ½ΡΠΈΠ³ΡΡΠ°ΡΠΈΠΉ ΡΡΠ°Π½ΡΠΌΠΈΡΡΠΈΠΈ ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΡΡΡ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Π°Π½Π°Π»ΠΈΠ·Π° Π²ΡΠ±ΡΠΎΡΠΎΠ² Π²ΡΡ
Π»ΠΎΠΏΠ½ΡΡ
Π³Π°Π·ΠΎΠ² ΠΈ ΡΠ°ΡΡ
ΠΎΠ΄ΠΎΠ² ΡΠΎΠΏΠ»ΠΈΠ²Π°. ΠΠΎ-Π²ΡΠΎΡΡΡ
, ΡΠΈΠΊΠ»Ρ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΌΠ°ΡΡΡΠ°Π±ΠΈΡΡΡΡΡΡ Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Ρ ΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΈΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎΡΡΡΡ ΠΈ ΠΎΡΠ΅Π½ΠΈΠ²Π°Π΅ΡΡΡ Π²Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·Ρ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ°ΡΡ
ΠΎΠ΄ΠΎΠΌ ΡΠΎΠΏΠ»ΠΈΠ²Π° ΠΈ ΡΠΈΠΊΠ»Π°ΠΌΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ. Π-ΡΡΠ΅ΡΡΠΈΡ
, ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Ρ ΡΡΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΡΠ°ΡΡ
ΠΎΠ΄Π° ΡΠΎΠΏΠ»ΠΈΠ²Π°, ΡΠ°ΠΊ ΡΡΠΎ ΡΠ°ΡΡ
ΠΎΠ΄ ΡΠΎΠΏΠ»ΠΈΠ²Π° Π΄Π»Ρ ΡΠ΅Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΠΊΠ»Π° Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΡΠΏΡΠΎΠ³Π½ΠΎΠ·ΠΈΡΠΎΠ²Π°Π½ Π² ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΈ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΊΠΎΠ½ΡΠΈΠ³ΡΡΠ°ΡΠΈΠΈ ΡΡΠ°Π½ΡΠΌΠΈΡΡΠΈΠΈ. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, ΡΡΠΎ ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ ΠΎΠ±ΡΡΠ½ΠΎΠΉ ΡΡΠ°Π½ΡΠΌΠΈΡΡΠΈΠ΅ΠΉ ΠΏΠΎΡΡΠ΅Π±Π»Π΅Π½ΠΈΠ΅ ΡΠΎΠΏΠ»ΠΈΠ²Π° ΠΌΠ΅Π½ΡΡΠ΅ Ρ Π³ΠΈΠ±ΡΠΈΠ΄Π½ΡΡ
ΡΡΠ°Π½ΡΠΏΠΎΡΡΠ½ΡΡ
ΡΡΠ΅Π΄ΡΡΠ². ΠΡΠΏΡΡΠ°Π½ΠΈΡ Π΄Π°Π»ΠΈ Π½Π΅ΠΎΠΆΠΈΠ΄Π°Π½Π½ΡΠΉ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ: Π±ΠΎΠ»Π΅Π΅ Π²ΡΡΠΎΠΊΠΈΠ΅ ΡΡΠΎΠ²Π½ΠΈ Π²ΡΠ±ΡΠΎΡΠΎΠ² CO Ρ Π³ΠΈΠ±ΡΠΈΠ΄Π½ΡΡ
ΡΡΠ°Π½ΡΠΏΠΎΡΡΠ½ΡΡ
ΡΡΠ΅Π΄ΡΡΠ². ΠΡΠΎΠΌΠ΅ ΡΠΎΠ³ΠΎ, ΡΠ°ΡΡ
ΠΎΠ΄ ΡΠΎΠΏΠ»ΠΈΠ²Π° Π²ΡΠ΅Ρ
ΡΠ΅ΡΡΡΠ΅Ρ
ΡΡΠ°Π½ΡΠΌΠΈΡΡΠΈΠΉ ΡΠΊΠ°Π·ΡΠ²Π°Π΅Ρ Π½Π° ΡΠΈΠ»ΡΠ½ΡΡ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΡ ΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡΠΌΠΈ ΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΈΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎΡΡΠΈ Π²ΡΠ±ΡΠ°Π½Π½ΡΡ
ΡΠΈΠΊΠ»ΠΎΠ² Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ. ΠΡΡΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΏΡΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΠΈΠΊΠ»Π°Ρ
Π²ΠΎΠΆΠ΄Π΅Π½ΠΈΡ Π² ΡΡΠ΅Π΄Π½Π΅ΠΌ ΠΏΡΠ΅Π΄ΠΏΠΎΡΡΠ΅Π½ΠΈΠ΅ ΠΏΠΎ ΡΠΎΠΏΠ»ΠΈΠ²Ρ Π΄Π»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΡΠΈΠΊΠ»Π° ΡΠΎΡΡΠ°Π²ΠΈΠ»ΠΎ: 23 % β Π΄Π»Ρ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΡΡ
, 21 % β Π΄Π»Ρ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΡ
ΠΈ 33 % β Π΄Π»Ρ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΡΡ
Π³ΠΈΠ±ΡΠΈΠ΄ΠΎΠ² Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ Ρ ΡΡΠ°Π½ΡΠΌΠΈΡΡΠΈΠ΅ΠΉ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ Π²Π½ΡΡΡΠ΅Π½Π½Π΅Π³ΠΎ ΡΠ³ΠΎΡΠ°Π½ΠΈΡ. ΠΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΡ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, ΡΡΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ Π³ΠΈΠ±ΡΠΈΠ΄Π½ΡΡ
ΠΊΠΎΠ½ΡΠΈΠ³ΡΡΠ°ΡΠΈΠΉ Π²Π°ΡΡΠΈΡΡΠ΅ΡΡΡ Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ ΡΠΈΠΊΠ»Π° Π²ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΈ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ Π³ΠΈΠ±ΡΠΈΠ΄ΠΈΠ·Π°ΡΠΈΠΈ. Π ΡΡΠ°ΡΡΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Ρ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΡΠ΅ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ
A multi criterion analysis for renewable energy integration process of a standalone hybrid energy system with internal combustion generator
Integrating renewable energy into standalone Internal Combustion Generator (ICG) systems is an economical and eco-friendly option. However, previous studies demonstrate the difficulties in replacing the ICGs completely by using Solar PV (SPV) and wind energy with a dispatchable energy storage. This makes it interesting to analyze the limitations in integrating the SPV and wind energy into Hybrid Energy System. A multi criterion analysis is presented in this study, considering Levelized Energy Cost, Loss of Load Probability, and Fuel Consumption varying the scale of the ICG capacity to attain aforementioned objective. Changes in the system design with the integration of the SPV and wind energy were analyzed using Pareto multi-objective optimization considering Renewable Energy Capacity as an objective function. Sensitivity of the ICG capacity on optimum Renewable Energy Technology, role of the ICG in improving system reliability, etc., were subsequently analyzed. The results depict that the ICG capacity notably influence to the balance between wind and SPV capacity. An increase in the ICG capacity does increase the contribution from dispatchable energy source in most of the scenarios. Furthermore, it facilitates to amalgamate highly fluctuating renewable energy sources at a relatively low cost. This makes it inevitable to replace ICG with non-dispatchable renewable energy sources and energy storage
Performance analysis of photovoltaic thermal (Pvt) panels considering thermal parameters
Solar PVT panels are getting popular for wider spectrum of applications for concurrent heat and power generation (CHP). These panels can provide the heating demand of buildings while generating electricity which becomes ideal for building applications of urban energy systems. Energy flow analysis of such panels and performance analysis of such systems becomes essential to design PVT systems matching with the operating conditions. A number of studies have used both theoretical and experimental methods to optimize PVT. However, this task is challenging due to interrelation of CHP production based on two different phenomena where classical optimization methods cannot be applied directly. Hence basic performance analysis considering primary design parameters plays a major role. In this study, a computational model is developed to evaluate sensitivity of design, operating and climatic parameters for a hybrid PVT system and to analyze the performances of PVT for five different design configurations. Five main configurations of the PVT system are considered based on the heat transfer fluid and the arrangements of glass and tedlar layers of PVT collector. This study presents comprehensive performance analysis conducted to evaluate the sensitivity of mass flow rate and working fluid temperature for the five different design configurations of PVT panels. Results show that glass-tedlar water collector performs better when compared to other configurations. Subsequently, the sensitivity of wind speed and solar irradiation is evaluated. The behavior of thermal and electrical efficiencies is analyzed at different wind speed and solar irradiation levels for a range of mass flow rates and working fluid temperatures. Important conclusions on the performance of PVT panels are given based on this detailed analysis