4 research outputs found

    Π‘Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ расхода Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π° ΠΈ уровня выбросов ΠΏΡ€ΠΈ ΠΎΠ±Ρ‹Ρ‡Π½ΠΎΠΉ ΠΈ Π³ΠΈΠ±Ρ€ΠΈΠ΄Π½Ρ‹Ρ… конфигурациях трансмиссий c ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ Ρ†ΠΈΠΊΠ»ΠΎΠ² двиТСния ΠΈ стСпСни Π³ΠΈΠ±Ρ€ΠΈΠ΄ΠΈΠ·Π°Ρ†ΠΈΠΈ

    Get PDF
    Hybrid electric powertrains in automotive applications aim to improve emissions and fuel economy with respect to conventional internal combustion engine vehicles. Variety of design scenarios need to be addressed in designing a hybrid electric vehicle to achieve desired design objectives such as fuel consumption and exhaust gas emissions. The work in this paper presents an analysis of the design objectives for an automobile powertrain with respect to different design scenarios, i. e. target drive cycle and degree of hybridization. Toward these ends, four powertrain configuration models (i. e. internal combustion engine, series, parallel and complex hybrid powertrain configurations) of a small vehicle (motorized three-wheeler) are developed using Model Advisor software and simulated with varied drive cycles and degrees of hybridization. Firstly, the impact of vehicle power control strategy and operational characteristics of the different powertrain configurations are investigated with respect to exhaust gas emissions and fuel consumption. Secondly, the drive cycles are scaled according to kinetic intensity and the relationship between fuel consumption and drive cycles is assessed. Thirdly, three fuel consumption models are developed so that fuel consumption values for a real-world drive cycle may be predicted in regard to each powertrain configuration. The results show that when compared with a conventional powertrain fuel consumption is lower in hybrid vehicles. This work led to the surprisingly result showing higher CO emission levels with hybrid vehicles. Furthermore, fuel consumption of all four powertrains showed a strong correlation with kinetic intensity values of selected drive cycles. It was found that with varied drive cycles the average fuel advantage for each was: series 23 %, parallel 21 %, and complex hybrids 33 %, compared to an IC engine powertrain. The study reveals that performance of hybrid configurations vary significantly with drive cycle and degree of hybridization. The paper also suggests future areas of study

    Π‘Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ расхода Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π° ΠΈ уровня выбросов ΠΏΡ€ΠΈ ΠΎΠ±Ρ‹Ρ‡Π½ΠΎΠΉ ΠΈ Π³ΠΈΠ±Ρ€ΠΈΠ΄Π½Ρ‹Ρ… конфигурациях трансмиссий c ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ Ρ†ΠΈΠΊΠ»ΠΎΠ² двиТСния ΠΈ стСпСни Π³ΠΈΠ±Ρ€ΠΈΠ΄ΠΈΠ·Π°Ρ†ΠΈΠΈ

    Get PDF
    Hybrid electric powertrains in automotive applications aim to improve emissions and fuel economy with respect to conventional internal combustion engine vehicles. Variety of design scenarios need to be addressed in designing a hybrid electric vehicle to achieve desired design objectives such as fuel consumption and exhaust gas emissions. The work in this paper presents an analysis of the design objectives for an automobile powertrain with respect to different design scenarios, i. e. target drive cycle and degree of hybridization. Toward these ends, four powertrain configuration models (i. e. internal combustion engine, series, parallel and complex hybrid powertrain configurations) of a small vehicle (motorized three wheeler) are developed using Model Advisor software and simulated with varied drive cycles and degrees of hybridization. Firstly, the impact of vehicle power control strategy and operational characteristics of the different powertrain configurations are investigated with respect to exhaust gas emissions and fuel consumption. Secondly, the drive cycles are scaled according to kinetic intensity and the relationship between fuel consumption and drive cycles is assessed. Thirdly, three fuel consumption models are developed so that fuel consumption values for a real-world drive cycle may be predicted in regard to each powertrain configuration. The results show that when compared with a conventional powertrain fuel consumption is lower in hybrid vehicles. This work led to the surprisingly result showing higher CO emission levels with hybrid vehicles. Furthermore, fuel consumption of all four powertrains showed a strong correlation with kinetic intensity values of selected drive cycles. It was found that with varied drive cycles the average fuel advantage for each was: series 23 %, parallel 21 %, and complex hybrids 33 %, compared to an IC engine powertrain. The study reveals that performance of hybrid configurations vary significantly with drive cycle and degree of hybridization. The paper also suggests future areas of study.ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π³ΠΈΠ±Ρ€ΠΈΠ΄Π½Ρ‹Ρ… элСктричСских трансмиссий Π² Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΏΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½ΠΎΡΡ‚ΠΈ – это Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ выбросов ΠΈ экономии Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π° Π² сравнСнии с ΠΎΠ±Ρ‹Ρ‡Π½Ρ‹ΠΌΠΈ автомобилями с Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»Π΅ΠΌ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅Π³ΠΎ сгорания. Для достиТСния ΠΆΠ΅Π»Π°Π΅ΠΌΡ‹Ρ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² ΠΏΡ€ΠΈ ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ Π³ΠΈΠ±Ρ€ΠΈΠ΄Π½ΠΎΠ³ΠΎ элСктромобиля Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹, учитывая ΠΏΡ€ΠΈ этом расход Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π° ΠΈ выбросы Π²Ρ‹Ρ…Π»ΠΎΠΏΠ½Ρ‹Ρ… Π³Π°Π·ΠΎΠ². Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ прСдставлСн Π°Π½Π°Π»ΠΈΠ· проСктирования Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»ΡŒΠ½ΠΎΠΉ трансмиссии, рассмотрСны Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹ ΠΈ ситуации, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Ρ†Π΅Π»Π΅Π²ΠΎΠΉ Ρ†ΠΈΠΊΠ» двиТСния ΠΈ ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ Π³ΠΈΠ±Ρ€ΠΈΠ΄ΠΈΠ·Π°Ρ†ΠΈΠΈ. PΠ°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Ρ‹ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΊΠΎΠ½Ρ„ΠΈΠ³ΡƒΡ€Π°Ρ†ΠΈΠΈ трансмиссии (Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»ΡŒ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅Π³ΠΎ сгорания, сСрийная, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π°Ρ ΠΈ комплСксная ΠΊΠΎΠ½Ρ„ΠΈΠ³ΡƒΡ€Π°Ρ†ΠΈΠΈ Π³ΠΈΠ±Ρ€ΠΈΠ΄Π½ΠΎΠΉ трансмиссии) для нСбольшого транспортного срСдства (ΠΌΠΎΡ‚ΠΎΡ€ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ трСхколСсный Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»ΡŒ) с использованиСм ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠ³ΠΎ обСспСчСния Model Advisor. ΠŸΠ΅Ρ€Π΅Ρ‡ΠΈΡΠ»Π΅Π½Π½Ρ‹Π΅ ΠΊΠΎΠ½Ρ„ΠΈΠ³ΡƒΡ€Π°Ρ†ΠΈΠΈ трансмиссии ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π»ΠΈΡΡŒ с Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ Ρ†ΠΈΠΊΠ»Π°ΠΌΠΈ двиТСния ΠΈ Ρ€Π°Π·Π½ΠΎΠΉ ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒΡŽ Π³ΠΈΠ±Ρ€ΠΈΠ΄ΠΈΠ·Π°Ρ†ΠΈΠΈ. Π’ΠΎ-ΠΏΠ΅Ρ€Π²Ρ‹Ρ…, влияниС стратСгии управлСния ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒΡŽ транспортного срСдства ΠΈ эксплуатационных характСристик всСвозмоТных ΠΊΠΎΠ½Ρ„ΠΈΠ³ΡƒΡ€Π°Ρ†ΠΈΠΉ трансмиссии исслСдуСтся Π½Π° основС Π°Π½Π°Π»ΠΈΠ·Π° выбросов Π²Ρ‹Ρ…Π»ΠΎΠΏΠ½Ρ‹Ρ… Π³Π°Π·ΠΎΠ² ΠΈ расходов Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π°. Π’ΠΎ-Π²Ρ‚ΠΎΡ€Ρ‹Ρ…, Ρ†ΠΈΠΊΠ»Ρ‹ двиТСния ΠΌΠ°ΡΡˆΡ‚Π°Π±ΠΈΡ€ΡƒΡŽΡ‚ΡΡ Π² соотвСтствии с кинСтичСской ΠΈΠ½Ρ‚Π΅Π½ΡΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ ΠΈ оцСниваСтся взаимосвязь ΠΌΠ΅ΠΆΠ΄Ρƒ расходом Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π° ΠΈ Ρ†ΠΈΠΊΠ»Π°ΠΌΠΈ двиТСния. Π’-Ρ‚Ρ€Π΅Ρ‚ΡŒΠΈΡ…, Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Ρ‹ Ρ‚Ρ€ΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ расхода Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π°, Ρ‚Π°ΠΊ Ρ‡Ρ‚ΠΎ расход Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π° для Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ†ΠΈΠΊΠ»Π° двиТСния ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ спрогнозирован Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΊΠΎΠ½Ρ„ΠΈΠ³ΡƒΡ€Π°Ρ†ΠΈΠΈ трансмиссии. ИсслСдования ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ΠΎΠ±Ρ‹Ρ‡Π½ΠΎΠΉ трансмиссиСй ΠΏΠΎΡ‚Ρ€Π΅Π±Π»Π΅Π½ΠΈΠ΅ Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π° мСньшС Ρƒ Π³ΠΈΠ±Ρ€ΠΈΠ΄Π½Ρ‹Ρ… транспортных срСдств. Π˜ΡΠΏΡ‹Ρ‚Π°Π½ΠΈΡ Π΄Π°Π»ΠΈ Π½Π΅ΠΎΠΆΠΈΠ΄Π°Π½Π½Ρ‹ΠΉ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚: Π±ΠΎΠ»Π΅Π΅ высокиС ΡƒΡ€ΠΎΠ²Π½ΠΈ выбросов CO Ρƒ Π³ΠΈΠ±Ρ€ΠΈΠ΄Π½Ρ‹Ρ… транспортных срСдств. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, расход Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π° всСх Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ… трансмиссий ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Π½Π° ΡΠΈΠ»ΡŒΠ½ΡƒΡŽ ΠΊΠΎΡ€Ρ€Π΅Π»ΡΡ†ΠΈΡŽ со значСниями кинСтичСской интСнсивности Π²Ρ‹Π±Ρ€Π°Π½Π½Ρ‹Ρ… Ρ†ΠΈΠΊΠ»ΠΎΠ² двиТСния. ВыявлСно, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ†ΠΈΠΊΠ»Π°Ρ… воТдСния Π² срСднСм ΠΏΡ€Π΅Π΄ΠΏΠΎΡ‡Ρ‚Π΅Π½ΠΈΠ΅ ΠΏΠΎ Ρ‚ΠΎΠΏΠ»ΠΈΠ²Ρƒ для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ Ρ†ΠΈΠΊΠ»Π° составило: 23 % – для ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ…, 21 % – для ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΈ 33 % – для комплСксных Π³ΠΈΠ±Ρ€ΠΈΠ΄ΠΎΠ² Π² сравнСнии с трансмиссиСй двигатСля Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅Π³ΠΎ сгорания. ЭкспСримСнты ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π³ΠΈΠ±Ρ€ΠΈΠ΄Π½Ρ‹Ρ… ΠΊΠΎΠ½Ρ„ΠΈΠ³ΡƒΡ€Π°Ρ†ΠΈΠΉ Π²Π°Ρ€ΡŒΠΈΡ€ΡƒΠ΅Ρ‚ΡΡ Π² зависимости ΠΎΡ‚ Ρ†ΠΈΠΊΠ»Π° воТдСния ΠΈ стСпСни Π³ΠΈΠ±Ρ€ΠΈΠ΄ΠΈΠ·Π°Ρ†ΠΈΠΈ. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ пСрспСктивныС направлСния исслСдований

    A multi criterion analysis for renewable energy integration process of a standalone hybrid energy system with internal combustion generator

    No full text
    Integrating renewable energy into standalone Internal Combustion Generator (ICG) systems is an economical and eco-friendly option. However, previous studies demonstrate the difficulties in replacing the ICGs completely by using Solar PV (SPV) and wind energy with a dispatchable energy storage. This makes it interesting to analyze the limitations in integrating the SPV and wind energy into Hybrid Energy System. A multi criterion analysis is presented in this study, considering Levelized Energy Cost, Loss of Load Probability, and Fuel Consumption varying the scale of the ICG capacity to attain aforementioned objective. Changes in the system design with the integration of the SPV and wind energy were analyzed using Pareto multi-objective optimization considering Renewable Energy Capacity as an objective function. Sensitivity of the ICG capacity on optimum Renewable Energy Technology, role of the ICG in improving system reliability, etc., were subsequently analyzed. The results depict that the ICG capacity notably influence to the balance between wind and SPV capacity. An increase in the ICG capacity does increase the contribution from dispatchable energy source in most of the scenarios. Furthermore, it facilitates to amalgamate highly fluctuating renewable energy sources at a relatively low cost. This makes it inevitable to replace ICG with non-dispatchable renewable energy sources and energy storage

    Performance analysis of photovoltaic thermal (Pvt) panels considering thermal parameters

    No full text
    Solar PVT panels are getting popular for wider spectrum of applications for concurrent heat and power generation (CHP). These panels can provide the heating demand of buildings while generating electricity which becomes ideal for building applications of urban energy systems. Energy flow analysis of such panels and performance analysis of such systems becomes essential to design PVT systems matching with the operating conditions. A number of studies have used both theoretical and experimental methods to optimize PVT. However, this task is challenging due to interrelation of CHP production based on two different phenomena where classical optimization methods cannot be applied directly. Hence basic performance analysis considering primary design parameters plays a major role. In this study, a computational model is developed to evaluate sensitivity of design, operating and climatic parameters for a hybrid PVT system and to analyze the performances of PVT for five different design configurations. Five main configurations of the PVT system are considered based on the heat transfer fluid and the arrangements of glass and tedlar layers of PVT collector. This study presents comprehensive performance analysis conducted to evaluate the sensitivity of mass flow rate and working fluid temperature for the five different design configurations of PVT panels. Results show that glass-tedlar water collector performs better when compared to other configurations. Subsequently, the sensitivity of wind speed and solar irradiation is evaluated. The behavior of thermal and electrical efficiencies is analyzed at different wind speed and solar irradiation levels for a range of mass flow rates and working fluid temperatures. Important conclusions on the performance of PVT panels are given based on this detailed analysis
    corecore