7 research outputs found

    SARS-CoV-2-specific immune responses and clinical outcomes after COVID-19 vaccination in patients with immune-suppressive disease

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune responses and infection outcomes were evaluated in 2,686 patients with varying immune-suppressive disease states after administration of two Coronavirus Disease 2019 (COVID-19) vaccines. Overall, 255 of 2,204 (12%) patients failed to develop anti-spike antibodies, with an additional 600 of 2,204 (27%) patients generating low levels (<380 AU ml−1). Vaccine failure rates were highest in ANCA-associated vasculitis on rituximab (21/29, 72%), hemodialysis on immunosuppressive therapy (6/30, 20%) and solid organ transplant recipients (20/81, 25% and 141/458, 31%). SARS-CoV-2-specific T cell responses were detected in 513 of 580 (88%) patients, with lower T cell magnitude or proportion in hemodialysis, allogeneic hematopoietic stem cell transplantation and liver transplant recipients (versus healthy controls). Humoral responses against Omicron (BA.1) were reduced, although cross-reactive T cell responses were sustained in all participants for whom these data were available. BNT162b2 was associated with higher antibody but lower cellular responses compared to ChAdOx1 nCoV-19 vaccination. We report 474 SARS-CoV-2 infection episodes, including 48 individuals with hospitalization or death from COVID-19. Decreased magnitude of both the serological and the T cell response was associated with severe COVID-19. Overall, we identified clinical phenotypes that may benefit from targeted COVID-19 therapeutic strategies

    Modal spectral Tchebyshev Petrov–Galerkin stratagem for the time-fractional nonlinear Burgers’ equation

    Get PDF
    Herein, we construct an explicit modal numerical solver based on the spec-tral Petrov–Galerkin method via a specific combination of shifted Cheby-shev polynomial basis for handling the nonlinear time-fractional Burger-type partial differential equation in the Caputo sense. The process reduces the problem to a nonlinear system of algebraic equations. Solving this alge-braic equation system will yield the approximate solution’s unknown coef-ficients. Many relevant properties of Chebyshev polynomials are reported, some connection and linearization formulas are reported and proved, and all elements of the obtained matrices are evaluated neatly. Also, conver-gence and error analyses are established. Various illustrative examples demonstrate the applicability and accuracy of the proposed method and depict the absolute and estimated error figures. Besides, the current ap-proach’s high efficiency is proved by comparing it with other techniques in the literature

    Plant-Derived Natural Alkaloids as New Antimicrobial and Adjuvant Agents in Existing Antimicrobial Therapy

    No full text
    corecore