38 research outputs found

    Relationship between Tumor DNA Methylation Status and Patient Characteristics in African-American and European-American Women with Breast Cancer

    Get PDF
    Aberrant DNA methylation is critical for development and progression of breast cancer. We investigated the association of CpG island methylation in candidate genes and clinicopathological features in 65 African-American (AA) and European-American (EA) breast cancer patients. Quantitative methylation analysis was carried out on bisulfite modified genomic DNA and sequencing (pyrosequencing) for promoter CpG islands of p16, ESR1, RASSF1A, RARβ2, CDH13, HIN1, SFRP1 genes and the LINE1 repetitive element using matched paired non-cancerous and breast tumor specimen (32 AA and 33 EA women). Five of the genes, all known tumor suppressor genes (RASSF1A, RARβ2, CDH13, HIN1 and SFRP1), were found to be frequently hypermethylated in breast tumor tissues but not in the adjacent non-cancerous tissues. Significant differences in the CDH13 methylation status were observed by comparing DNA methylation between AA and EA patients, with more obvious CDH13 methylation differences between the two patient groups in the ER- disease and among young patients (age<50). In addition, we observed associations between CDH13, SFRP1, and RASSF1A methylation and breast cancer subtypes and between SFRP1 methylation and patient's age. Furthermore, tumors that received neoadjuvant therapy tended to have reduced RASSF1A methylation when compared with chemotherapy naïve tumors. Finally, Kaplan Meier survival analysis showed a significant association between methylation at 3 loci (RASSF1A, RARβ2 and CDH13) and reduced overall disease survival. In conclusion, the DNA methylation status of breast tumors was found to be significantly associated with clinicopathological features and race/ethnicity of the patients

    In Vivo Assessment of Gene Delivery to Keratinocytes by Lentiviral Vectors

    No full text
    For skin gene therapy, introduction of a desired gene into keratinocyte progenitor or stem cells could overcome the problem of achieving persistent gene expression in a significant percentage of keratinocytes. Although keratinocyte stem cells have not yet been completely characterized and purified for gene targeting purposes, lentiviral vectors may be superior to retroviral vectors at gene introduction into these stem cells, which are believed to divide and cycle slowly. Our initial in vitro studies demonstrate that lentiviral vectors are able to efficiently transduce nondividing keratinocytes, unlike retroviral vectors, and do not require the lentiviral accessory genes for keratinocyte transduction. When lentiviral vectors expressing green fluorescent protein (GFP) were directly injected into the dermis of human skin grafted onto immunocompromised mice, transduction of dividing basal and nondividing suprabasal keratinocytes could be demonstrated, which was not the case when control retroviral vectors were used. However, flow cytometry analysis demonstrated low transduction efficiency, and histological analysis at later time points provided no evidence for progenitor cell targeting. In an alternative in vivo method, human keratinocytes were transduced in tissue culture (ex vivo) with either lentiviral or retroviral vectors and grafted as skin equivalents onto immunocompromised mice. GFP expression was analyzed in these human skin grafts after several cycles of epidermal turnover, and both the lentiviral and retroviral vector-transduced grafts had similar percentages of GFP-expressing keratinocytes. This ex vivo grafting study provides a good in vivo assessment of gene introduction into progenitor cells and suggests that lentiviral vectors are not necessarily superior to retroviral vectors at introducing genes into keratinocyte progenitor cells during in vitro culture

    Identification and characterization of tumor-initiating cells in human primary cutaneous squamous cell carcinoma

    Get PDF
    Primary human squamous cell carcinomas (SCCas) are heterogeneous invasive tumors with proliferating outer layers and inner differentiating cell masses. To determine if tumor-initiating cells (TICs) are present in SCCas, we utilized newly developed reliable in vitro and in vivo xenograft assays that propagate human SCCas, and demonstrated that a small subset of SCCa cells (~1%) expressing Prominin-1 (CD133) in the outer layers of SCCas were highly enriched for TICs (~1/400) compared with unsorted SCCa cells (TICs ~1/106). Xenografts of CD133+ SCCas recreated the original SCCa tumor histology and organizational hierarchy, whereas CD133− cells did not, and only CD133+ cells demonstrated the capacity for self-renewal in serial transplantation studies. We present a model of human SCCas in which tumor projections expand with outer leading edges that contain CD133+ TICs. Successful cancer treatment will likely require that the TICs identified in cancers be targeted therapeutically. The demonstration that TICs are present in SCCas and are enriched in a CD133− expressing subpopulation has not been, to our knowledge, previously reported

    Quantitative Proteomics Employing Primary Amine Affinity Tags

    No full text
    A proteomics-based method using stable isotope labeling to assess the relative abundance of peptides or proteins is described. Bradykinin and carbonic anhydrase were labeled with sulfosuccinimidyl-2-(biotinamido) ethyl-1,3-dithiopropionate, a membrane impermeant reagent that is reactive with primary amines. Specificity of the label to primary amines was demonstrated using tandem mass spectrometry. Also, relative quantitation was achieved by secondary labeling with natural isotopic abundance and stable isotope-labeled methyl iodide. We believe this to be an effective stable isotope-labeling method for quantitative proteomics

    Structural Analysis of the Interaction between Shiga Toxin B Subunits and Linear Polymers Bearing Clustered Globotriose Residues

    No full text
    We previously developed linear polymers bearing clustered trisaccharides of globotriaosylceramide (Gb3) as orally applicable Shiga toxin (Stx) neutralizers. Here, using a Gb3 polymer with a short spacer tethering the trisaccharide to the core, we found that shortening the spacer length markedly reduced the binding affinity for Stx2 but not Stx1. Moreover, mutational analysis revealed that the essential binding sites of the terminal trisaccharides were completely different between Stx1 and Stx2. These results provide the molecular basis for the interaction between Stx B subunits and Gb3 polymers

    A Detergent- and Cyanogen Bromide-Free Method for Integral Membrane Proteomics: Application to Halobacterium Purple Membranes and the Human Epidermal Membrane Proteome

    No full text
    A simple and rapid method for characterizing hydrophobic integral membrane proteins and its utility for membrane proteomics using microcapillary liquid chromatography coupled on-line with tandem mass spectrometry (microLC-MS/MS) is described. The present technique does not rely on the use of detergents, strong organic acids or cyanogen bromide-mediated proteolysis. A buffered solution of 60% methanol was used to extract, solubilize, and tryptically digest proteins within a preparation of Halobacterium (H.) halobium purple membranes. Analysis of the digested purple membrane proteins by microLC-MS/MS resulted in the identification of all the predicted tryptic peptides of bacteriorhodopsin, including those that are known to be post-translationally modified. In addition, 40 proteins from the purple membrane preparation were also identified, of which 80% are predicted to contain between 1 and 16 transmembrane domains. To evaluate the general applicability of the method, the same extraction, solubilization, and digestion conditions were applied to a plasma membrane fraction prepared from human epidermal sheets. A total of 117 proteins was identified in a single microLC-MS/MS analysis, of which 55% are known to be integral or associated with the plasma membrane. Due to its simplicity, efficiency, and absence of MS interfering compounds, this technique can be used for the characterization of other integral membrane proteins and may be concomitantly applied for the analysis of membrane protein complexes or large-scale proteomic studies of different membrane samples
    corecore