121 research outputs found

    Modulation of physical understanding by common marmosets (Callithrix jacchus)

    Get PDF
    The understanding of physical causality in common marmosets was tested using support problems in which a pair of sheets was presented to determine whether subjects would choose the sheet that had a food item on it (i.e., the sheet was supporting the food item). In two experiments, the conditions were manipulated in terms of the length of the sheet, the distance between the sheet and the food item, the presence of a gap separating the two sheets, and the size of the food item. In Experiment 1, the marmosets had difficulty rejecting an irretrievable food item when it was located closer to them than a retrievable item. Although their performance was strongly affected by the size of the irretrievable food item, they quickly learned to reject that alternative. In contrast, no improvement was found when one sheet was divided into two pieces such that the food item could not be retrieved when its near side was pulled. A similar response tendency was observed in Experiment 2, in which the effects of the large food item were examined in three different conditions. Thus, common marmosets were influenced by the perceptual features of the food in solving the support problems, as are other non-human primates. In addition, they consistently failed to appreciate the presence of a gap and, therefore, failed to reject the distracter alternative. However, all animals rapidly learned that the size of the food item was an irrelevant variable, and some showed an elementary conceptual understanding of support. These findings suggest that marmosets’ physical understanding may improve with experience

    Measuring Dynamical Uncertainty With Revealed Dynamics Markov Models

    Get PDF
    Concepts and measures of time series uncertainty and complexity have been applied across domains for behavior classification, risk assessments, and event detection/prediction. This paper contributes three new measures based on an encoding of the series' phase space into a descriptive Markov model. Here we describe constructing this kind of “Revealed Dynamics Markov Model” (RDMM) and using it to calculate the three uncertainty measures: entropy, uniformity, and effective edge density. We compare our approach to existing methods such as approximate entropy (ApEn) and permutation entropy using simulated and empirical time series with known uncertainty features. While previous measures capture local noise or the regularity of short patterns, our measures track holistic features of time series dynamics that also satisfy criteria as being approximate measures of information generation (Kolmogorov entropy). As such, we show that they can distinguish dynamical patterns inaccessible to previous measures and more accurately reflect their relative complexity. We also discuss the benefits and limitations of the Markov model encoding as well as requirements on the sample size

    Sequential learning and rule abstraction in Bengalese finches

    Get PDF
    The Bengalese finch (Lonchura striata var. domestica) is a species of songbird. Males sing courtship songs with complex note-to-note transition rules, while females discriminate these songs when choosing their mate. The present study uses serial reaction time (RT) to examine the characteristics of the Bengalese finches’ sequential behaviours beyond song production. The birds were trained to produce the sequence with an “A–B–A” structure. After the RT to each key position was determined to be stable, we tested the acquisition of the trained sequential response by presenting novel and random three-term sequences (random test). We also examined whether they could abstract the embedded rule in the trained sequence and apply it to the novel test sequence (abstract test). Additionally, we examined rule abstraction through example training by increasing the number of examples in baseline training from 1 to 5. When considered as (gender) groups, training with 5 examples resulted in no statistically significant differences in the abstract tests, while statistically significant differences were observed in the random tests, suggesting that the male birds learned the trained sequences and transferred the abstract structure they had learned during the training trials. Individual data indicated that males, as opposed to females, were likely to learn the motor pattern of the sequence. The results are consistent with observations that males learn to produce songs with complex sequential rules, whereas females do not

    Association of food location with biological cues in the macaque monkey

    Get PDF
    Abstract. Many animal species including humans are endowed with the ability to use biological cues and can extract information by observing other individuals. This study explored whether the macaque monkey could use biological cue to find a hidden target. When the experimenter hid food in one hand and crossed and uncrossed hands quickly, the monkey had no difficulty in finding the food and correctly reached for the baited hand. However, when the food was hidden in one of two cups and the cups were shuffled, the monkey could correctly select the baited cup only at an equal level of luck. These results indicate that the macaque monkey could associate the location of food with a biological cue better than a non-biological cue and keep it in memory when the target was unseen

    Dynamic Social Adaptation of Motion-Related Neurons in Primate Parietal Cortex

    Get PDF
    Social brain function, which allows us to adapt our behavior to social context, is poorly understood at the single-cell level due largely to technical limitations. But the questions involved are vital: How do neurons recognize and modulate their activity in response to social context? To probe the mechanisms involved, we developed a novel recording technique, called multi-dimensional recording, and applied it simultaneously in the left parietal cortices of two monkeys while they shared a common social space. When the monkeys sat near each other but did not interact, each monkey's parietal activity showed robust response preference to action by his own right arm and almost no response to action by the other's arm. But the preference was broken if social conflict emerged between the monkeys—specifically, if both were able to reach for the same food item placed on the table between them. Under these circumstances, parietal neurons started to show complex combinatorial responses to motion of self and other. Parietal cortex adapted its response properties in the social context by discarding and recruiting different neural populations. Our results suggest that parietal neurons can recognize social events in the environment linked with current social context and form part of a larger social brain network

    Triadic (ecological, neural, cognitive) niche construction: a scenario of human brain evolution extrapolating tool use and language from the control of reaching actions

    Get PDF
    Hominin evolution has involved a continuous process of addition of new kinds of cognitive capacity, including those relating to manufacture and use of tools and to the establishment of linguistic faculties. The dramatic expansion of the brain that accompanied additions of new functional areas would have supported such continuous evolution. Extended brain functions would have driven rapid and drastic changes in the hominin ecological niche, which in turn demanded further brain resources to adapt to it. In this way, humans have constructed a novel niche in each of the ecological, cognitive and neural domains, whose interactions accelerated their individual evolution through a process of triadic niche construction. Human higher cognitive activity can therefore be viewed holistically as one component in a terrestrial ecosystem. The brain's functional characteristics seem to play a key role in this triadic interaction. We advance a speculative argument about the origins of its neurobiological mechanisms, as an extension (with wider scope) of the evolutionary principles of adaptive function in the animal nervous system. The brain mechanisms that subserve tool use may bridge the gap between gesture and language—the site of such integration seems to be the parietal and extending opercular cortices

    Potential role of monkey inferior parietal neurons coding action semantic equivalences as precursors of parts of speech

    Get PDF
    The anterior portion of the inferior parietal cortex possesses comprehensive representations of actions embedded in behavioural contexts. Mirror neurons, which respond to both self-executed and observed actions, exist in this brain region in addition to those originally found in the premotor cortex. We found that parietal mirror neurons responded differentially to identical actions embedded in different contexts. Another type of parietal mirror neuron represents an inverse and complementary property of responding equally to dissimilar actions made by itself and others for an identical purpose. Here, we propose a hypothesis that these sets of inferior parietal neurons constitute a neural basis for encoding the semantic equivalence of various actions across different agents and contexts. The neurons have mirror neuron properties, and they encoded generalization of agents, differentiation of outcomes, and categorization of actions that led to common functions. By integrating the activities of these mirror neurons with various codings, we further suggest that in the ancestral primates' brains, these various representations of meaningful action led to the gradual establishment of equivalence relations among the different types of actions, by sharing common action semantics. Such differential codings of the components of actions might represent precursors to the parts of protolanguage, such as gestural communication, which are shared among various members of a society. Finally, we suggest that the inferior parietal cortex serves as an interface between this action semantics system and other higher semantic systems, through common structures of action representation that mimic language syntax

    Tool-Use Training in a Species of Rodent: The Emergence of an Optimal Motor Strategy and Functional Understanding

    Get PDF
    Tool use is defined as the manipulation of an inanimate object to change the position or form of a separate object. The expansion of cognitive niches and tool-use capabilities probably stimulated each other in hominid evolution. To understand the causes of cognitive expansion in humans, we need to know the behavioral and neural basis of tool use. Although a wide range of animals exhibit tool use in nature, most studies have focused on primates and birds on behavioral or psychological levels and did not directly address questions of which neural modifications contributed to the emergence of tool use. To investigate such questions, an animal model suitable for cellular and molecular manipulations is needed.) to use a rake-like tool with their forelimbs to retrieve otherwise out-of-reach rewards. Eventually, they mastered effective use of the tool, moving it in an elegant trajectory. After the degus were well trained, probe tests that examined whether they showed functional understanding of the tool were performed. Degus did not hesitate to use tools of different size, colors, and shapes, but were reluctant to use the tool with a raised nonfunctional blade. Thus, degus understood the functional and physical properties of the tool after extensive training.Our findings suggest that tool use is not a specific faculty resulting from higher intelligence, but is a specific combination of more general cognitive faculties. Studying the brains and behaviors of trained rodents can provide insights into how higher cognitive functions might be broken down into more general faculties, and also what cellular and molecular mechanisms are involved in the emergence of such cognitive functions

    Tool-use learning by common marmosets (Callithrix jacchus)

    Get PDF
    One of the most critical and common features of tool use is that the tool essentially functions as a part of the body. This feature is likely rooted in biological features that are shared by tool users. To establish an ideal primate model to explore the neurobiological mechanisms supporting tool-use behaviours, we trained common marmosets, a small New World monkey species that is not usually associated with tool use, to use a rake-shaped tool to retrieve food. Five naive common marmosets were systematically trained to manipulate the tool using a 4-stage, step-by-step protocol. The relative positions of the tool and the food were manipulated, so that the marmosets were required to (1) pull the tool vertically, (2) move the tool horizontally, (3) make an arc to retrieve a food item located behind the tool and (4) retrieve the food item. We found considerable individual differences in tool-use technique; for example, one animal consistently used a unilateral hand movement for all of the steps, whereas the others (n = 4) used both hands to move the tool depending on the location of the food item. After extensive training, all of the marmosets could manipulate the rake-shaped tool, which is reported in this species for the first time. The common marmoset is thus a model primate for such studies. This study sets the stage for future research to examine the biological mechanisms underlying the cognitive ability of tool use at the molecular and genetic levels

    Acting up: An approach to the study of cognitive development

    Get PDF
    International audienceDespite decades of research, we lack a comprehensive framework to study and explain cognitive development. The emerging " paradigm " of action-based cognition implies that cognitive development is an active rather than a passive, automatic, and self-paced maturational process. Importantly, " active " refers to both sensorimotor activity (in the narrow sense) as well as to autonomous exploration (e.g., as found in active perception or active learning). How does this emphasis on action affect our understanding of cog-nitive development? Can an action-based approach provide a much-needed integrative theory of cognitive development? This chapter reviews key factors that infl uence development (including sensorimo-tor skills as well as genetic, social, and cultural factors) and their associated brain mechanisms. Discussion focuses on how these factors can be incorporated into a comprehensive action-based framework. Challenges are highlighted for future research (e.g., problems associated with explaining higher-level cognitive abilities and devising novel experimental methodologies). Although still in its infancy, an action-based approach to cognitive development holds promise to improve scientifi c understanding of cognitive development and to impact education and technology
    corecore