
ORIGINAL RESEARCH
published: 07 February 2019

doi: 10.3389/fams.2019.00007

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 1 February 2019 | Volume 5 | Article 7

Edited by:

Peter Ashwin,

University of Exeter, United Kingdom

Reviewed by:

Isao T. Tokuda,

Ritsumeikan University, Japan

Axel Hutt,

German Weather Service, Germany

*Correspondence:

Aaron Bramson

aaron.bramson@riken.jp

Specialty section:

This article was submitted to

Dynamical Systems,

a section of the journal

Frontiers in Applied Mathematics and

Statistics

Received: 06 May 2018

Accepted: 21 January 2019

Published: 07 February 2019

Citation:

Bramson A, Baland A and Iriki A

(2019) Measuring Dynamical

Uncertainty With Revealed Dynamics

Markov Models.

Front. Appl. Math. Stat. 5:7.

doi: 10.3389/fams.2019.00007

Measuring Dynamical Uncertainty
With Revealed Dynamics Markov
Models
Aaron Bramson 1,2,3*, Adrien Baland 1 and Atsushi Iriki 1,4

1 Laboratory for Symbolic Cognitive Development, Center for Biosystems Dynamics Research, Wakoshi, Japan, 2Department

of General Economics, Gent University, Gent, Belgium, 3Department of Software and Information Systems, University of

North Carolina at Charlotte, Charlotte, NC, United States, 4 RIKEN-NTU Research Centre for Human Biology, Lee Kong

Chian School of Medicine, Nanyang Technological University, Singapore, Singapore

Concepts and measures of time series uncertainty and complexity have been

applied across domains for behavior classification, risk assessments, and event

detection/prediction. This paper contributes three new measures based on an encoding

of the series’ phase space into a descriptive Markov model. Here we describe

constructing this kind of “Revealed Dynamics Markov Model” (RDMM) and using it to

calculate the three uncertainty measures: entropy, uniformity, and effective edge density.

We compare our approach to existing methods such as approximate entropy (ApEn) and

permutation entropy using simulated and empirical time series with known uncertainty

features. While previous measures capture local noise or the regularity of short patterns,

our measures track holistic features of time series dynamics that also satisfy criteria as

being approximate measures of information generation (Kolmogorov entropy). As such,

we show that they can distinguish dynamical patterns inaccessible to previous measures

and more accurately reflect their relative complexity. We also discuss the benefits and

limitations of the Markov model encoding as well as requirements on the sample size.

Keywords: time series, entropy, uncertainty, complexity, markov model

1. INTRODUCTION

Time series uncertainty is a quantification of how complicated, complex, or difficult it is to predict
or generate the sequence of values in the time series. Measures of time series uncertainty can be
used to classify and identify changes in the characteristic behavior of time series. Applications that
have utilized dynamical uncertainty-based categorization include identifying cardiac arrhythmias
[1], epileptic patters in EEGs [2, 3], and shocks in financial dynamics [4] to name a few; and with
the growth of machine learning techniques to classify behavior by quantified feature descriptions,
there is a growing demand for accurate, robust, and scalable measures of time series dynamics.

Existing measures of time series uncertainty/complexity/predictability (used interchangeably
in this context, henceforth just “uncertainty”) such as Approximate Entropy (ApEn) [5] and its
refinement Sample Entropy (SampEn) [6] as well as Permutation [7] and Increment [8] entropies
partially succeed by capturing specific features of time series dynamics, but they ignore other
features that clearly contribute to a time series’ uncertainty. This paper introduces a novel way
to measure dynamical uncertainty in time series data by first converting its coarse-grained phase
space into a descriptive Markov model called a “Revealed Dynamics Markov Model” (RDMM).
Although predictive Markov models have been overshadowed by more sophisticated methods,
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they still hold many benefits for descriptive purposes: such as
facilitating distance metrics and intuitively representing system
dynamics [9]. Here we describe themathematical foundation and
robustness of the proposed approach to measuring uncertainty
and demonstrate that it (1) is a genuine measure of time
series uncertainty, (2) reflects distinct features of the dynamics
compared to previous measures (3) results in improved
classification of time series dynamics.

We first describe the construction of the specialized Markov
model and the three proposed uncertainty measures on it:
Shannon entropy, uniformity, and turbulence (effective edge
density). We then explore the effects of binning parameters
through a comparison against previous measures on simulated
and empirical data. We find that the proposed measures
are indeed distinct measures of uncertainty, and that many
RDMM-based measures out-perform previous measures
in accurately classifying time series by their uncertainty
properties. We also individually evaluate the various RDMM-
based measures and find that turbulence with a curvature
parameter of 2 is the most consistent in accurately measuring
dynamical uncertainty. We identify issues with binning
and normalization that require further examination and
point to applications in time series classification and event
detection.

2. METHODS

The proposed measurement technique operates on a description
of the time series as a specific kind of Markov model. The
construction of the requisite Markov model is straightforward;
see Figure 1 for a simplified example. One coarse-grains the
phase space and assigns a node for each non-empty bin; i.e.,
each observed system state. The frequency of each observed state
transition is recorded on the edge between the corresponding
nodes, and these frequencies are normalized to generate
conditional probability distributions. That is, for each state we
know the proportions of transitions over next states, and these
proportions comprise the maximum likelihood estimates for
the transition probabilities (although Laplacian, Bayesian, and
other approaches exist). Any node without an exit transition
is given a reflexive edge with weight 1 to ensure the result
is a true Markov model of the revealed dynamics across the
dataset’s phase space (a “Revealed Dynamics Markov Model”
or RDMM).

The analyses here use the simplest binning technique. For
each dimension of time series X = {x1, x2, . . . , xT} divide
the observed range (max xi − min xi) into B equal-width bins.
This creates n nodes representing equivalence classes of values;
but since some bins may be empty, n ≤

∏D
d=1 Bd for a

phase space with dimension D (the bins per dimension/variable
may be heterogeneous). Alternative binning methods collect
different sets of points into each bin, and thus create different
nodes and transitions, but the analysis of the resulting RDMM
is unchanged.

As usual, node (state) si transitions to node sj with probability
pij. Because Markov models are directed, reflexive networks,

FIGURE 1 | Simple demonstration of applying the RDMM method to a small

sequence of data. Note that there are no observations in bin 3, so no node is

created for it. The probabilities for each exit transition reflect the proportions of

bin-to-bin changes except for bin 5′s terminating self-loop.

when the set of nodes N is fully connected, the set of edges E has
size n2. No measure here is sensitive to a node’s in-degree, so ki
will be used to refer solely to a node’s out-degree, and ki to the set
of nodes that i can transition into:

ki = ∪sj∈N pij > 0. (1)

Self-loops count in the out-degree of a node, thus ki = |ki|.
This RDMM variant of Markov modeling is essentially how

one builds Markov chains from categorical data such as gene
sequences [10], computer security profiles [11], and protein
configurations [12], but here the nodes represent bins rather than
predefined categories or events. Unlike hidden Markov models
(HMMs) [13–16] where the nodes represent a combination
of observable and unobservable (hidden) variables according
to a user-specified model, the nodes of an RDMM are all
derived from observable variables and no a priori model of
their relationships is required. HMMs are used for tasks such
as prediction, pattern recognition, and to infer the generative
properties of the hidden nodes. The RDMMs proposed here
capture and describe the observed time series, and can be used
for pattern recognition and classification, but are not being
proposed for predictive or inductive purposes. Other Markov
chain approaches capture yet other features of the dynamics
[17–19], highlighting how broadly useful the mathematical
structure is.

Other network representations of time-series data exist
as well: recurrence networks [20], networks of interacting
dynamical units [21], networks of temporal correlations of data
features (e.g., cycles [22]), and others (see [23] for a partial
comparison). Depending on how the data are translated into a
network, different network measures (such as degree, clustering
coefficient, or betweenness centrality) are relevant and revealing;
the Markov representation is a flexible framework for capturing
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time series data (especially simulation output) that is also useful
for measuring other dynamical properties.

2.1. Measures of Dynamical Uncertainty on
RDMMs
The Markov model representation enables techniques that
combine structural measures of weighted directed graphs
and probabilistic measures of stochastic processes. Although
the mathematics necessary here are familiar, by combining
well-understood ingredients in a novel way we produce a
new analytical window on system dynamics. We propose
the following desiderata for uncertainty measures on Markov
models:

1. Uncertainty is maximized when all states are equally likely to
transition into every state; this requires not just randomness,
but a uniform distribution across all sequential pairs of data.

2. Uncertainty is minimized when every state has exactly one
exit transition (including reflexive transitions); this implies
that the process is deterministic, although not all deterministic
processes will achieve this due to binning and/or hysteresis.

3. Themeasure reports (monotonically) higher values if and only
if the uncertainty/complexity of the data is greater.

From an information-content interpretation these measures are
similar to Kolmogorov (algorithmic) complexity in which the
“program language” is a Markov model; what these measures
tell us is how complicated that model has to be (in terms of
the number and distributions of edges) in order to generate the
time series data. RDMMs are intended to be merely descriptive
(rather than predictive or generative), so what is important is
that the RDMM appropriately captures the features bearing the
uncertainty, and the measures track those uncertainty properties
in the RDMM. We now present the mathematical details of the
proposed measures, an evaluation of their satisfaction of the
above desiderata, and a summary of comparison measures before
moving on to the tests.

2.1.1. Entropy
The default measure of uncertainty is entropy, and more
specifically Shannon entropy. Although Shannon entropy is
commonly applied to Markov processes (including the original
description in [24]), the Markov models in those applications
are constructed distinctly from RDMMs; for example, they
are required to be ergodic. RDMMs are often non-ergodic,
but despite this difference the Shannon entropy measure is
applicable and useful here after appropriate normalization and
reinterpretation.

Entropy can be evaluated for individual nodes or for the whole
system. For the local measure we calculate the entropy of the
edge weights of the existing out-going transitions, but this doesn’t
adjust for the number of possible edges. For this application
one must realize that missing links in an RDMM also provide
information about the uncertainty of the system. As such, the
appropriate measure of uncertainty must normalize over all n
possible connections. The maximum entropy value occurs when
a node’s exit transitions are all equally weighted at pij = 1/ki =
1/n. The equation for calculating normalized local entropy for

each node is

h(si) =
1

ln 1
n

∑

sj∈ki

pij ln pij . (2)

The entropy of the whole system H(S) can be equivalently
calculated as either the mean of the node’s individual entropy
values or directly as the entropy of all the graph edges normalized
by n ln(1/n).

H(S) =
1

n ln 1
n

∑

i∈E
pi ln pi . (3)

2.1.2. Uniformity
As an alternative to entropy we can calculate the lack of
uniformity of the nodes’ exit probabilities. That is, because
a complete uniform distribution over edge weights implies a
complete lack of information about the system’s dynamics, we
can measure the uncertainty by calculating the edge weights’
divergence from a complete uniform distribution. The core
calculation here is similar to calculating the χ2-test statistic for
a discrete uniform distribution, then the normalized deviation
from a complete uniform distribution is subtracted from 1 so
that zero deviation from uniformity yields a maximal uncertainty
measure of one. The local uniformity of a node si is

U(si) = 1−
n

2n− 2

∑

j∈ki

∣

∣

∣

∣

pij −
1

n

∣

∣

∣

∣

q

(4)

in which we set q = 1 throughout. Global uniformity can also
equivalently be calculated as either the mean of the nodes’ local
uniformities or directly from the full edge set. Here we use the
mean of local values:

GU(S) = 1−
1

2n− 2

∑

i,j∈S

∣

∣

∣

∣

pij −
1

n

∣

∣

∣

∣

q

. (5)

2.1.3. Turbulence
Our turbulence measure is the most innovative, but is essentially
a kind of normalized weighted edge density. We start with
basic edge density: the percentage of possible transitions that are
present in the network: |E|/n.Normalized edge density adapts this
to the RDMM case in which each node must have at least one
out-edge:

1
n2
|E| − 1

n

1− 1
n

=
|E| − n

n2 − n
. (6)

Normalized edge density acts as an unrefined measure of
dynamical uncertainty under the interpretation that the fewer
transition edges in the system, the fewer possible paths through
the system dynamics, and hence the less dynamically uncertain
it is. Dense graphs indicate there is more uncertainty over how
the system’s dynamics will unfold. It is not being proposed as a
measure of uncertainty because it treats all possible transitions
as equally likely (i.e., ignoring their probability weights), but is
useful for comparison.
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Transition probabilities clearly play a role in determining
dynamical uncertainty, so we need a weighted version of edge
density. We cannot simply sum/average the edge weights in a
Markov model (as is typically done in network theory [25, 26]).
Instead we need a measure such that the minimal value occurs
when one edge dominates and the maximal value occurs when
all the edge weights are equal. One such measure is the inverse
Simpson index [27], and we call it “effective degree” following
Laakso and Taagepera [28]’s use of this formulation as the
effective number of political parties. The effective degree of state
si is

κi =
1

∑

j∈ki pij
q
. (7)

The curvature parameter q determines the relative weight given
to smaller vs. larger transition probabilities; we explore q ∈
{0.5, 1, 2, 3}. If state si’s existing transitions all have the same

probability, then κi = k
q−1
i . As the proportions become more

focused on one edge, the effective degree converges to 1. Thus,
effective degree it reports how many exit transitions a node has
after considering the proportional weights of those transitions,
and larger values of q downplay the importance of smaller
weights.

Finally, ourmeasure of turbulenceq is the normalized weighted
edge density using effective degree as the weights. The maximum
value obtainable depends on the parameter q, so that must also
be included in the normalization:

τq(S) =
1
n2

∑

si∈Sκi −
1
n

(

1
n

)2−q − 1
n

=
∑

si∈Sκi − n

nq − n
. (8)

Note that when applying effective edge density to a subset of
the system S′ (as one might do to test differences of uncertainty
for distinct behavioral regimes), one must set ki (the neighbors
of node i) in the effective degree calculations to sum over only
those transitions within S′ to ensure the normalization bounds
are satisfied.

2.1.4. Local vs. Global Measures
For the three measures above, variation in the local measures
across nodes tells us whether some regions of the phase space
are considerably more uncertain than others. This is useful in
contexts where one is choosing states or paths for the modeled
system, or in which system uncertainty should be weighted by
some node property (e.g., frequency, centrality, or a context-
specific state variable). Additionally, one can use the node degree
k instead of n as the normalization factor in each of the measures
above to achieve a measure of dynamic heterogeneity which has a
distinct, but related, interpretation from uncertainty.

2.1.5. Normalization and Minimum Sample Size
The normalization of the measures above are based onmaximum
uncertainty occurring when the network is fully connected with
homogeneous weights, but for a Markov model with n states,
there would need to be at least T = n2 + 1 data points in
the time series to produce that output. From this constraint we
can formulate a general equation for the maximum number of

equal-width bins Bm capable of supporting the maximum level of
uncertainty:

Bm = ⌊ 2D√
T − 1 ⌋ , (9)

where D is again the number of dimensions (i.e., distinct
variables). For high-dimensional data the total number of bins
(voxels, cells) is the same, but then divided into each dimension,
so this severely limits the number of bins per variable. Note that in
many cases there will be (possibly a large number of) empty bins,
so by setting the binning parameter using this general equation
we are guaranteed to reach at least the specified level for the actual
number of nodes. Of course it is also possible to adaptively bin
the data so that the number of nodes (instead of bins) satisfied
this criteria.

However, even if the data were generated from a uniform
random distribution, we would not expect to see each of the
n2 transitions exactly once before seeing any repeats. In order
for a system with n2 states to reveal itself as uniformly random
we would need a large number of samples per state. Although
theoretically we would need an infinite number, realistically we
may be satisfied with 30 or 100 n samples. If η is the desired
number of points per bin, then to satisfy this criterion we would
need to find a number of bins so that each one had at least η

samples in it. That could be approximated with a number of equal
width bins BS = T/η, but it would be better to use equal-contents
bins set to η points per bin. These and other confidence level
considerations are the focus of continued work.

2.2. RDMM Uncertainty Measure Scaling
Figure 2 shows the values of each RDMM measure with
increasing edge density in order to present scaling differences
among the RDMMmeasures; i.e., how differently they behave in
response to denser and sparser Markov models. In Figure 2A the
edge weights are homogeneous, and this shows the differences in
scaling in “ideal” circumstances. Normalized edge density (black
diagonal line) acts as a control because it is completely insensitive
to the distribution of weights. In the homogeneous case both
uniformity and turbulence2 are equal to edge density and have a
linear relationship between the number of edges per node and the
uncertainty. Entropy, turbulence0.5, and turbulence1 exaggerate
the uncertainty, especially in sparse RDMMs, while turbulence3
depresses it. The curves in Figure 2A confirm that RDMM
measures of uncertainty satisfy the desiderata for normalization
and monotonicity laid out for them.

Figure 2B shows an example of the values of the measures
when the probability weights are heterogeneous. Note that
uniformity and turbulence2 both split further away from
normalized edge density as the density of the RDMM increases,
but in a different way (this will be important in our empirical
analyses later). Also note that even when all edges are present
in the network, because the weights are heterogeneous the
uncertainly level is <1 because the distribution of edge weights
carries information about the system dynamics. None of these
scaling patterns is a priori superior, so we evaluate each RDMM
measure based on their performance on tests below.

Interestingly, when q = 1 in the turbulence measure it is
undefined because the sum of the probabilities is always exactly 1,
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FIGURE 2 | Scaling comparison of the RDMM measures of uncertainty. Each one is normalized onto the [0, 1] range, but has varying sensitivity to differences in the

exit probability distributions within that range. Comparison made with 100 nodes and varying the number of edges per node with uniform weight = 1/k (A), or

assigning random proportions to each edge (B). Increasing the total number of nodes increases the curvature (deviation away from edge density) of all measures.

and hence the minimum and maximum value of the measure
are both one. But as q → 1, turbulence becomes equivalent to
entropy. The reason for this equivalence is that for small values

of x, the Maclaurin series for ln(1+ x) = x− x2

2 + x3

3 − x4

4 + . . .;
and so, when q = 1 + 10−10 the sum of the node probabilities
differ slightly from being exactly 1, and when normalized the
scaling of these values is indistinguishable from the scaling of the
natural logarithm. For this reason we abandon further analyses of
turbulence1.

2.3. Comparison Measures
We compare our RDMM measures against established measures
of uncertainty/complexity that can be directly calculated from
the times series. We do not assess other approaches that require
an intermediate model, such as neural networks, discrete wavelet
transforms, or other types of Markov models. We briefly cover
each comparison measure here; further details can be found in
the Appendix A and related literature.

First we have three general measures of the variation within
the data. (1) Variance is the average of the squared distances
from the mean. (2) Volatility is the variance in the log returns,
and as such is undefined for many datasets. (3) Jaggedness is
the mean of absolute distances among sequential point pairs;
this actually measures the monotonicity of the sequence. These
three measures are not specifically purported to be measures
of uncertainty and are included to ensure that the proposed
measures are not merely tracking these basic properties.

We have size more sophisticated measures from the literature
that do purport to measure uncertainty: (4) Approximate entropy
(ApEn) is the difference in the proportions of windows of length
m = 2 and 3 that are within distance r = 0.2σ of each other
[5]. (5) Sample entropy (SampEn) is a refinement of ApEn that
takes the log ratio of proportions of windows of length m = 2
and 3 that are within distance r = 0.2σ of each other (excluding
self-comparisons) [6]. (6) Permutation entropy is the Shannon
entropy of the observed proportions of each type of ordinal
permutation possible by taking all sets of 5 sequential points
[29, 30]. (7) Incremental entropy is the Shannon entropy of a

sequence of “words” formed by the magnitude and direction
of each incremental pair [8]. (8) The permutation test using
non-overlapping windows of length 5 provides a measure via
the χ2-test statistic [7]. (9) The runs test determines how well
the counts of contiguous chains of values above or below the
mean follow a binomial distribution [31, 32]; although usually
a test of randomness, its normalized z-score acts as a measure
here.

To simply describe the main measures, ApEn/SampEn reflect
the lack of short, recurrent, and regular patterns in the time series
while permutation and increment entropies describe how locally
noisy the system is in different ways. A similarly simple way to
describe the proposed RDMM measures is that they track how
systematically predictable a sequence is from its previous value.
Although none of those summaries do the measures justice, they
perhaps provide useful intuitions as we move forward to the data
analyses.

3. DATA ANALYSIS AND RESULTS

Our focus here is demonstrating that the RDMM-basedmeasures
are genuine and distinct measures of time series uncertainty
with improved accuracy compared to previous measures. We
do this by comparing the uncertainty ranks of each measure
across a variety of simulated and empirical data sets chosen for
their known uncertainty features. We are especially interested
in the robustness and consistency properties of these measures
across different resolutions of the same data. Partly this is
because such binning is required by the RDMM technique and
we need to assess the sensitivity to this parameter. Another
motivation is because many datasets are digital representations
of analog signals, and we wish to ensure our measurements
on the coarse-grained data accurately reflects the uncertainty
of the underlying data. Using simulated data we can assess
whether each measure consistently produces the expected
effects. Then, using empirical data we can further assess
generality and robustness against irregular noise and systemic
change.
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3.1. Simulated Data
We generated seven types of time series using functions chosen
to systematically explore the measures’ relative behaviors. Using
Nt to represent a pull from a random distribution at time t,
the functions are (1) a low frequency sine wave: sin t

4π , (2) a

basic sine wave: sin t
π
, (3) a high frequency sine wave: sin 8t

π
,

(4) random noise: Nt , (5) a random walk:
∑t

i=1 Ni, (6) a noisy
sine wave: sin t

π
+ Nt , and (7) a randomly walking sine wave:

sin t
π
+

∑t
i=1 Ni. Our primary exposition covers one exemplar

with T = 1, 200 points using a normal distribution with µ =
0 and σ = 0.4; however, in section 3.1.3 we examine sets
of 100 instantiations of longer time series and multiple noise
distributions.

For each time series we calculate all measures using equal-
width bins numbering from 5–100 in increments of 5. We
additionally calculate each non-RDMM measure directly on the
original time series (marked as ∞ bins in all plots). Figure 3
shows the values for key measures across binnings for noise
(Figure 3A) and the random walk (Figure 3B) to present some
recurring relevant highlights regarding the relative behaviors of
the different measures for discussion. Below we also discuss the
main results from the entire battery of tests; while additional
details and figures can be found in Appendix B.

Variance and jaggedness have only a small increase over
5–15 bins, but are otherwise insensitive to the binning (flat),
volatility cannot be applied to these data because the log returns
is undefined when the value is zero, and the runs test (as
we used it) shows only the noise series as having non-zero
uncertainty (these measures were left off Figure 3). Permutation
entropy and the permutation test (red lines) are typically closely
linked (redundant), and increment entropy (purple) is also often
correlated with them, but sometimes fluctuates independently.
However, as can be clearly seen in Figure 3B, 4A,B, all three
of these measures reveal increasing uncertainty with increasing
resolution on all stochastic series due to a known flaw in how
they handle tied values [33, 34]. ApEn and SampEn (green
lines) typically have similar patterns with respect to both their
magnitude and their sawtooth shape across numbers of bins,
but are not completely redundant. One important difference is
that ApEn ranks the low-frequency sine wave as more uncertain
than both the other deterministic sine waves and the random
walk (Appendix B.3.2), while SampEn rates the random walk
as equally or slightly less uncertain than the deterministic
time series (Figure 4C). Both are inaccurate, but SampEn is
revealed to be an improvement over ApEn. In summary, all the
previous measures yield at least some counter-intuitive behavior
in response the changes in the resolution of the data and/or the
ranking of the series’ uncertainties.

By contrast, for a sufficiently high number of bins (depending
on the number of datapoints, here 45) most of the proposed
RDMM measures rank the simulated time series as expected:
the two noise series at top, the deterministic series on the
bottom, and the random walks in between (turbulence2 shown in
Figure 4D othermeasure’s plots are available inAppendix B.3.2).
Some RDMM measures are better than others. For example,
turbulence3 can be eliminated from consideration because it just

behaves as a dampened turbulence2; having both is redundant
and turbulence2’s greater sensitivity makes examining results
easier. Turbulence0.5 and entropy yield prolonged increasing
uncertainty with increasing bins for the random walk and
walking sine wave time series, although it levels off after
50 60 bins. Turbulence0.5 is more extreme than entropy, and
is the only RDMM measure that gets the uncertainty ranking
incorrect (putting the random walk above noise after 75 bins).
Turbulence0.5 and entropy can be tentatively eliminated as viable
measures of uncertainty, but we continue to include them in the
analysis. Uniformity and edge density are also similar enough to
be considered redundant, and edge density was merely included
as a control measure, thus making uniformity less appealing as a
measure of uncertainty because it is insufficiently sensitive to the
edge weights.

Many of the RDMM results just described are ramifications
of the differences in network density scaling presented in
section 2.2. For a given dataset, as the number of bins increases,
the density of the Markov model typically decreases. As the
density decreases, the uncertainty would intuitively tend to
decrease, but it depends on how low vs. high probability edges are
factored into the measure. Turbulence0.5 and (evidently) entropy
factor low-weighted edges too strongly into the uncertainty
calculation; thus a random walk appears highly deterministic
with low numbers of bins, but comes out as increasingly random
with higher numbers of bins. We continue the analysis and
evaluation below, but these results already demonstrate that the
RDMM approach (and turbulence2 in particular) can distinguish
and accurately measure the uncertainty of time series dynamics
in a way that previous methods cannot.

3.1.1. Monotonicity Analysis
An analysis of the average monotonicity (mean over the
datasets of the jaggedness of the measures across bins –
Appendix Table B.2 and Figure B.8) reveals that (after variance)
the RDMM measures are generally the most consistent, which is
an indicator of their robustness to changes in resolution. In some
cases (variance, edge density, turbulence3) the high robustness
is really reflecting a general lack of sufficient sensitivity, while
in others (permutation and increment entropies) the lack of
sensitivity depends on the dataset or reflects an artifact of the
measures. ApEn and SampEn do the worst here. Although edge
density is extremely close to monotonically decreasing with
increasing number of bins, and the RDMM measures typically
have a smoother response curve than previous measures, this
isn’t enough to confirm or deny that the RDMM measures
are monotonically increasing with increasing actual uncertainty
because of the sensitivity of all measures to where exactly the
bins cut the data. For example, while the measured monotonicity
of turbulence2 is mediocre, this fails to reflect that consistently
across datasets there is a clear trend toward convergence as the
number of bins increases.

3.1.2. Reversing the Time Series
Running a time series in reverse will have an effect on
its predictability only under certain concepts of uncertainty;
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FIGURE 3 | The values across resolutions of uncertainty measures applied to random noise (A) and random walk (B) time series using the same instance of N for

T = 1, 200. Volatility, jaggedness, variance, and the runs test are not shown here to reduce clutter.

FIGURE 4 | The uncertainty values across resolutions of four selected measures for each of the generated time series using the same instance of N for T = 1, 200.

Beyond 45 bins, the ranking of the uncertainty by turbulence2 (D) (and most of the other RDMM measures) stabilizes to what one should expect: the two noise series

at top, the deterministic series on the bottom, and the random walks in between. The previous measures each achieve a partially correct ordering (A–C), but also

each make different errors.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 7 February 2019 | Volume 5 | Article 7

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Bramson et al. Measuring Dynamical Uncertainty

FIGURE 5 | Example Markov model demonstrating the difference in edge

weights between running the data forward (top) and in reverse (bottom).

e.g., when applied to text, music, or animal trajectories.
Among time series uncertainty measures, only the proposed
RDMM ones are properly sensitive to the direction (although
permutation-based methods are also effected by the order due
to the aforementioned tie-breaking flaw). RDMM measures are
direction-sensitive because the transition probabilities of the
generatedMarkov model will change, as can be clearly seen in the
following simplified example. Consider the following sequence
of values:

1 → 1 → 2 → 2 → 3 → 3 → 4 → 5 → 5 → 5

This series produces distinct Markov models when encoded
forward and backward as can be seen in Figure 5. It is
worth mentioning here because it signals a conceptual benefit
as well as an accuracy benefit in using RDMMs to understand
and measure time series dynamics, although we found only
small differences in the uncertainty values for the datasets
analyzed.

3.1.3. Broader Robustness Results
Although the limitation to 1,200 points reflects the reality of
many empirical time series, and exceeds the recommended
minimum points for previous measures of uncertainty [35–
37], in a further robustness test we analyze time series
with 10,001 points using 100 realizations of two kinds
of random seeds for the noise sequence. We also test
the effects of the distribution shape by including three
standard deviation values for the Normal distribution (σ =
{0.4, 0.8, 1.2}) as well as a Uniform distribution with endpoints at
{(−0.4, 0.4), (−0.8, 0.8), (−1.2, 1.2)}. The deterministic series are
(obviously) unaffected by changes in the distribution parameter
and left out of this analysis. Several measures have already been
eliminated from consideration, and although their results appear
in the Appendix, we focus on the main results of the remaining
measures here.

On the random noise series, all measures produce similar
trajectories with slight variation using the Normal distribution
(Figure 6A), but largely consistent values at each resolution
for all realizations of uniform noise (Figure 6B). Note that
for the random noise series, no measure is systematically
affected by changing the distribution parameters; widening
either distribution produces no measurable difference in
uncertainty (figures available in Appendix B.8). However,

there is a marked difference in the behavior of the RDMM
measures between Normal and Uniform noise. Specifically,
the RDMM measures (but not the previous measures) report
greater uncertainty for the Uniform distribution across all
resolutions. This is because the normal distribution produces
a pattern in the exit transitions of the induced Markov
model, with more edges and stronger weights in the center
and fewer/weaker links at the periphery, but the uniform
distribution (obviously) produces a more uniform Markov
model. This is exactly the sense of uncertainty we are aiming
to measure with this technique: the existence of a (potentially
stochastic) pattern in the time series that yields information
about the generating mechanism. The ability of the RDMM
measures, and the inability of the non-RDMM measures, to
capture this difference is a clear benefit of the proposed
technique.

For the random walk, none of the measures report
systemically higher or lower uncertainty values across increasing
parameter values or between normal and uniform distributions
as shown in Figure 7. Because there is no underlying pattern in
the random walk, the resulting trajectory of accumulated noise
does not vary (systematically) depending on the type of noise.
The characteristic behavior of random walks does not depend on
the particular kind of (symmetric) randomnoise distribution that
generates them.

Figure 8 summarizes the results of normally vs. uniformly
distributed noise for the noisy sine wave and random walking
sine wave. The pattern of results across bins for the noisy
sine wave are similar to noise in Figure 6, but there are two
key differences. First, increasing noise yields an increase in the
uncertainly level for all measures, and this effect is stronger for
uniform noise. Second, the discrepancy between Normal and
Uniform noise is much smaller due to a reduced effect from
Uniform noise. This is because the effect of a little noise is small
compared to the curvature of the sine wave, so there is still
a visible sine wave moving up and down, and sine waves are
predictable. Increasing the noise level drowns out the sine wave
pattern, so it looksmore like just noise, and the uncertainty values
of all measures reflect this.

The random walking sine wave provides an interesting mix of
the random walk and noisy sine wave. In this case increasing the
dispersion of the noise has the effect of reducing the uncertainty
for both normal and uniform distributions (though slightly more
pronounced for uniform noise). This is also caused by the
underlying sine wave providing a recognizable pattern. However,
in this case, as the noise increases, the accumulated values look
less like a noisy sine wave and more like a random walk; and
random walks have lower uncertainty than noisy sine waves, so
the net effect of increased noise is reduced uncertainty. This is
true for the RDMM measures as well as SampEn, but not for
permutation entropy.

These tests show that the RDMM measure’s ability to
accurately rank the uncertainty of each dataset is (1) robust
against the time series length and (2) largely invariant to any
particular draw from the random distribution. We find that
in some cases uniform noise does indeed yield less predictable
series than normally distributed noise, but this is effect is only
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FIGURE 6 | The uncertainty values across resolutions of selected measures applied to the random noise series using 100 distinct instances of Normally (A) and

Uniformly (B) distributed noise for T = 10, 001.

FIGURE 7 | The uncertainty values across resolutions of selected measures applied to the random walk series using 100 distinct instances of Normally (A) and

Uniformly (B) distributed noise for T = 10, 001.

picked up by RDMM measures. We also find that increased
random dispersion relative to the wave amplitude reduces
the information provided by the wave’s contribution to the
dynamics in intuitive ways and this information content cannot
be detected by permutation entropy. We can conclude that the
RDMM approach can reliably capture (and can distinguish)
overall dynamical patterns such as oscillation, continuity, noise
type, and various combinations thereof rather than merely
pick up idiosyncratic variations of particular datasets. We
have demonstrated several benefits of the RDMM approach
based on our analyses of generated data, now we continue
to empirical datasets with intuitive uncertainty rankings but
unknown functional forms.

3.2. Weather Data
Weather prediction is clearly important, and hidden Markov
models (HMM) have long been useful for this task [38–41].
The point of the HMM approach is that there is an underlying

(hidden) causal mechanism with parameters that can be reverse-
engineered from the observed data and then used to make
near-term predictions. Our technique is not being proposed for
making predictions, it instead describes the observed dynamics
in a way that facilitates new measures of system uncertainty. As
mentioned above, one way to think about it is that uncertainty
measures on the RDMM inform us of how complicated theHMM
(or other model) would need to be to capture the dynamics in a
certain weather system.

To test our measures of uncertainty we analyze daily
temperature and precipitation data for New York, NY; San
Diego, CA; Phoenix, AZ; and Miami, FL using NOAA data
from Jan 1, 2010 to Dec 31, 2016 (T = 2557) from [42] (and
available upon request). Plots of the first half of each time series
appear in Figure 9 to foster the readers’ intuitions regarding their
relative uncertainty levels. These cities were chosen because of
their distinct mixes of temperature and precipitation patterns:
New York and Phoenix have similar temperature variations,
but very different precipitation levels whereas Miami and San
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FIGURE 8 | The uncertainty value of the noisy sine wave and random walking sine wave by selected measures at 50 bins for 100 realizations of Normally and

Uniformly distributed noise across dispersion values.

FIGURE 9 | Plots of the first half of the temperature and precipitation data for all four cities. Plots of the full time series appear in Appendix C.
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Diego have similar temperatures and very different rain patterns.
On the other hand, San Diego and Phoenix have similar rain
patterns, as do New York and Miami. Thus, these four cities
together occupy each square of a 2 × 2 grid of low and high
temperature fluctuations and precipitation amounts. Because
of these relationships we can establish an intuitive ranking
of the uncertainty of weather in these cities. In order from
most predictable to most uncertain are (1) San Diego, (2)
Phoenix/Miami, and (3) New York. Phoenix and Miami tie for
second in our intuitive ranking because the two cities are trading
off variation in one time series with the other; the resulting
ranking will depend on whether precipitation or temperature is
more uncertain.We test how eachmeasure performs inmatching
our expectation, as well as their sensitivity to binning.

One reason we chose weather data is to demonstrate
the shared binning adjustments necessary to ensure that the
uncertainty results can be compared on the same scale across
datasets. Using shared binning means the min and max across
all four cities are used to determine the bins for all four
analyses. Without shared binning, independent normalization to
the observed ranges within each city would make (among other
irregularities) all temperature series appear similar and likely
yield similar uncertainty values despite their clear differences in
magnitudes.

For RDMM entropy the shared normalization is a
straightforward replacement of n (number of nodes; i.e.,
observed states) with B (the number of bins). Re-normalizing
of edge density and turbulence requires changing 1/n in the
original formations to n/B2: thus shared-bin turbulence becomes

1
B2

∑

si∈S κi − n
B2

(

n
B2

)2−q
− n

B2

=
∑

si∈S κi − n

n
(

n
B2

)1−q
− n

. (10)

For uniformity it is necessary to convert the n × n adjacency
matrix into a B×Bmatrix by padding the difference with identity

matrix entries (si /∈ S → pii = 1, pij = 0). For all RDMM
measures, in order to reachmaximumuncertainty under a shared
binning scheme, a series would need a uniform distribution of
edge weights across all bins.

We find that temperature (which looks like a noisy sine
wave but yields results closer to the random walk) is rated as
more uncertain than precipitation by all measures for most bin
values. For precipitation, the previous measures pair NY≈Mi
and SD≈Ph (see sample entropy in Figure 10A) while the
RDMM measures consistently rank precipitation uncertainty
as Mi>NY>SD>Ph (see turbulence2 in Figure 10B). This
demonstrates that the RDMM measures are picking up on
differences in the magnitudes and seasonality of the dynamics
that the previous measures can not capture. Furthermore, the
ranking of temperature uncertainty reported by the RDMM
measures consistently matches the intuitively correct order
(NY>Ph>Mi>SD), while the non-RDMM measures (except for
increment entropy) are neither consistent nor intuitively correct.
Thus, for both precipitation and temperature we achieve better
results using the RDMMmeasures than previous measures.

One point of this empirical data analysis was to introduce
the shared binning modification. We saw that when comparing
datasets of the same kind of data, the binning should be done
using the [min, max] range of the combined data so that the
resulting Markov model states represent the same interval of
values across analyses. From analyzing the weather data we find
that some dynamical patterns’ uncertainty can be captured by
mostmeasures, but there are important differences in the size and
frequency of changes that only the RDMMmeasures reveal.

3.3. Exchange Rates
We next analyze the value of the United States Dollar (USD),
Japanese Yen (JPY), and Russian Ruble (RUB) in terms of
Euros using references rates from Jan 1, 2000 to Dec 31, 2016
(T = 4351) collected from D’ITALIA [43] (shown in Figure 11

and available upon request). The three currencies’ uncertainties

FIGURE 10 | Uncertainty levels across numbers of bins for SampEn (A) and turbulence2 (B). The rankings of the RDMM measures are both consistent and intuitively

correct while the previous measures fail to reflect the expected relative levels of time series complexity.
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FIGURE 11 | Time series data of the exchange rates of the Japanese Yen (JPY), Russian Ruble (RUB), and United States Dollar (USD) in terms of Euros across the

period of analysis.

have the same rank by all measures: JPY>USD>RUB. Because
these exchange rates are in terms of Euros, the Ruble’s lower
uncertainty implies that it the depends the most on (and is
therefore most highly correlated with) the Euro, and the Dollar
more so than the Yen. It is possible to standardize the three time
series (by, for example, subtracting the mean and dividing by
the standard deviation) and/or filter out the shared variations,
but for our current purposes it is acceptable to provide a Euro-
centric analysis because such an analysis suffices to compare
the relative uncertainty of the three referenced currencies.
That is, the relative uncertainty measurements are invariant to
standardization manipulations.

As is typical of exchange rate time series, ours look similar
to random walks, and as we saw in section 3.1 these kinds
of patterns are very predictable in the sense that most daily
variations are small compared to the full historic range. The result
is therefore low uncertainty values for many RDMM measures
(as well as ApEn and SampEn), but high uncertainty for local-
variation detecting permutation and increment entropies. On
this data we see that coarse-graining the data, even a little bit,
significantly affects these latter measures because they reflect
short-term fluctuations in the data. Greater resolution exposes
more local noise and these measures’ values increase toward the
unbinned limit near complete uncertainty for all currencies.

That is to be expected – it is more interesting to note
that the RDMM measures level off to intermediate values,
and to distinct values for each currency, successfully capturing
the distinct information contained within them. Note that
turbulence2 (up to now the best-performing measure) yields
very similar values for all three currencies; in fact, more similar
than any other (binned) measure. So although the Markov
model of the revealed dynamics seems to tease out the nuanced
differences in their behaviors, turbulence2 consistently reports a
tiny difference in the uncertainty of those behaviors. One way
to interpret this results is that, despite the RDMM capturing

three currencies’ behavior as distinct, the measure gets it right
because they actually do have similar uncertainty levels. That is
a plausible conclusion, especially when looking at the similarity
of their time series plots in Figure 11; however, one may instead
conclude that RDMM measures, and turbulence2 in particular,
may be bad at reflecting differences among random walk-like
dynamics. Considering that the uncertainty values are also very
similar according to SampEn, unbinned permutation/increment
entropy, and the other RDMM measures, we tend toward
supporting turbulence2’s evaluation: the Yen is the most
uncertain, and the Ruble the least uncertain, but the difference
in uncertainty is minute.

3.3.1 Combined Exchange Rates Analysis
Because all three series are in terms of the Euro, there is shared
information in their dynamics. One of the advantages of the
RDMM encoding is that it can capture multiple dimensions
simultaneously, and we demonstrate that capability here by
analyzing all three exchange rate datasets together in one RDMM.
Because we only need a node for those combinations of values
that actually occur in the combined time series, this method
suffers less from the exponential expansion of the phase space
volume with each added dimension. There are never more nodes
in the RDMM than points in the data, and with binning there
are (if the model is going to be useful) many fewer nodes than
datapoints regardless of the dimensionality.

Compared to the one-dimensional case in which nearly 100%
of the bins become nodes, raising the dimension greatly increases
the number of bins (B3 in this case). Because there are only
4,351 data points, as the number of bins increases, most of them
are empty (see Table 1). However, because the three series are
correlated, most of the B3 possible combinations of the variables
are never seen, and so those empty bins do not get represented
as a node of the RDMM. So although we find low proportions
of bins being used even for lower numbers of bins, The number
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TABLE 1 | Top table reports the proportion of bins used for each number of bins for each exchange rate time series.

Number of Bins 10 20 30 40 50 60 70 80 90 100

United States Dollar 1 1 1 1 1 1 1 0.988 0.989 0.99

Japanese Yen 1 1 1 1 1 1 1 1 1 1

Russian Ruble 1 1 1 1 1 1 0.971 0.988 0.978 0.97

Number of Bins per Variable 10 20 30 40 50 60 70 80 90 100

Number of Nodes 132 401 709 1,066 1,392 1,722 2,023 2,287 2,505 2,709

Proportion of Bins Used 0.132 0.05 0.026 0.017 0.011 0.008 0.006 0.004 0.003 0.003

The lower table reports both the number of nodes generated (i.e., observed bin values) and the resulting proportion of bins used for each number of bins for the combined analysis.

of new nodes being created decreases as the number of bins
increase. The three series are not independently random, and
the amount of their joint information can be read from the
structure of the generated RDMM. Specifically, the uncertainty
changes of the combined vs individual RDMMs provide insights
similar to mutual, conditional, and transfer entropy on the causal
influence/interactions of time series [44, 45].

The next point is about how the measures of uncertainty differ
with a multidimensional analysis. For the non-RDMMmeasures
we can only calculate some aggregate of the individual measures
(e.g., mean is used here). The uncertainty values still change in
our analysis because although these measures were applied to
each series independently, we applied them to the data binned
according to themultidimensional binning. That rebinning raises
the uncertainty reported by these measures, but the RDMM
measures tell us that fusing the correlated time series makes their
combined uncertainty less than their parts, even when adjusting
for the much larger number of bins (see Figure 12). This is
just as we should expect. Although for large numbers of bins
there are too few datapoints to provide high-confidencemeasures
of uncertainty, the observed reduced uncertainty even at lower
bins reflects how the RDMM technique captures the shared
information across the distinct time series to correctly report
that analyzing multiple exchange rate series together reduces our
uncertainty of how the exchange rate market fluctuates over time.
Another viable interpretation of this result is that the reduced
RDMM uncertainly is being driven entirely by the reduced
density of the generated RDMM. We discuss this later possibility
and need for further normalization in the conclusions section.

4. CONCLUSIONS

Representing a time series as a Markov model of the phase
space fosters the analysis of the system’s uncertainty in a novel
way. We explore three new measures of uncertainty based on
this RDMM and compare them to existing measures of time
series uncertainty. Our results demonstrate that the proposed
measures capture distinct sources of uncertainty compared to
previous measures, such as variations in the magnitude of
changes and the tradeoff between noise and an underlying signal,
as well as provide improved accuracy of relative uncertainty
values.

One surprising result is that Shannon entropy on an RDMM
has undesirable properties for a measure of system uncertainty;

specifically, increasing uncertainty values across increasing
resolution/information in many cases. This effect is generated
by the concave sensitivity profile of the measure shown in
Figure 2 that puts too much weight on low-probability edges.
Uniformity’s linear profile has superior features, but the measure
lacks sufficient sensitivity to edge weights. Although turbulence
with q = 2 comes out ahead overall on our tests, it is not
without some worries. Low levels of uncertainty for random
walks implies that these measures do bot pick up on the
randomness because this kind of accumulative randomness is
small when considered as a Markov process (as well as by ApEn
and SampEn).

Considering the results, if one needs to select a single
measure of time series uncertainty, then turbulence2 is the
best choice However, as we demonstrated, all the RDMM
measures perform well in some tests, and scale differently
on different kinds of dynamics. Similarly we showed that the
RDMM measures, by analyzing the Markov model encoding
all of the observed dynamics holistically, capture distinct
features of the dynamics compared to previous measures that
examine local time windows. Even variance, jaggedness, and
volatility (where applicable) provide information on different
senses of uncertainty. For this reason one may consider
an ensemble approach that combines multiple measures to
reflect multiple senses of uncertainty in an uncertainty profile.
Although one could include all the measures, based on the
correlations, redundancies, and accuracies found in our analysis,
including SampEn, permutation entropy, and turbulence2 may
be sufficient. Such an ensemble approach may provide better
classification performance for machine learning applications
because it can potentially discriminate among multiple kinds of
uncertainty.

The non-RDMM measures of complexity each include
parameters (window size, threshold, etc.) that strongly effect
the results but are usually just set by heuristics. The only
parameter for RDMM measures is binning (and q, but we’ve
already explored its effect on turbulence). We showed how
one can specify the maximum number of bins supported
by a series of length T using Bm = ⌊ 2D√

T − 1 ⌋ (for
D-dimensional data), and we explained that having too few
points depresses the uncertainty measures values because the
Markov model becomes too sparse (which is similar to being
more deterministic and hence less uncertain). However, a
better binning method would adapt to an ideal number of
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FIGURE 12 | Uncertainty levels across numbers for selected measures for both the Russian Ruble and the three-dimensional time-series of the three exchange rate

combined.

nodes (rather than bins) and depend on a desired number of
observations per node, or a desired confidence level across the
model. Our presentation using simple binning and a heuristic
for the number of bins parallels how previous methods set
standards for a minimum (typically 100) and recommended
(such as 900) number of consecutive points [30, 35–37].
Having insufficient data depresses their reported values as
well. Future work will explore (a) data-sensitive normalization
schemes (b) multinomial confidence levels for nodes and
(c) more sophisticated binning methods (equal-contents bins,
agglomerative binning, clustering, etc.) in order to best handle
the data/resolution tradeoff.

One advantage of the RDMMapproach is the ability to analyze
multi-dimensional time series where the curse of dimensionality
is softened because the RDMM only includes nodes for observed
combinations of binned values. This is especially valuable
for fusing categorical and numerical temporal data. Another
advantage is that (in some cases) one can combine multiple
independent trials into a unified RDMM; even if the length of
each series is short, the combined sequences can fill out the
details of the dynamical process. Furthermore, the descriptive
Markov models can be used to measure time series similarity for
unsupervised classification of behavior types [9] while offering an
intuitive window into the dynamics rather than a black box.

Measures of uncertainty have been usefully deployed on
cardiac, neurological, and financial time series already (e.g.,
using time-windowed assessments of changes in uncertainty for

event detection). Here we focused on system-wide uncertainty to
demonstrate that RDMMs robustly capture distinct features of
dynamical patterns to more accurately capture their uncertainty
levels. Future work will, aside from the above-mentioned
methodological innovations, also include applications utilizing

these measures to make a valuable contribution to assessments
of system uncertainty for risk management and event prediction
as well as behavior classification. For now, what we have
accomplished is a contribution to a body of measures to evaluate
time series data utilizing a novel form of Markov model that
outperform previous measures in many ways.
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