50 research outputs found

    Biomagnetic recovery of selenium: Bioaccumulating of selenium granules in magnetotactic bacteria

    Get PDF
    Using microorganisms to remove waste and/or neutralize pollutants from contaminated water is attracting much attention due to the environmentally friendly nature of this methodology. However, cell recovery remains a bottleneck and a considerable challenge for the development of this process. Magnetotactic bacteria are a unique group of organisms that can be manipulated by an external magnetic field due to the presence of biogenic magnetite crystals formed within their cells. In this study, we demonstrated the first account of accumulation and precipitation of amorphous elemental selenium nanoparticles within magnetotactic bacteria alongside and independently to magnetite crystal biomineralisation when grown in a medium containing selenium oxyanion (SeO3 (2-)). Quantitative analysis shows that magnetotactic bacteria accumulate the highest amount of target molecules (Se) per cell than any other previously reported of non-ferrous metal/metalloid. For example, 2.4 and 174 times more Se is accumulated when compared to Te uptaken into cells and Cd(2+) adsorption onto the cell surface respectively. Crucially, the bacteria with high levels of Se accumulation were successfully recovered with an external magnetic field. This biomagnetic recovery and effective accumulation of target elements demonstrate the potential for application in bioremediation of polluted water. IMPORTANCE: The development of a technique for effective environmental water remediation is urgently required across the globe. A biological remediation process of waste removal and/or neutralization of pollutant from contaminated water using microorganism has great potential, but cell recovery remains a bottleneck. Magnetotactic bacteria synthesize magnetic particles within their cells, which can be recovered by a magnetic field. Herein, we report the first example of accumulation and precipitation of amorphous elemental selenium nanoparticles within magnetotactic bacteria independent of magnetic particle synthesis. The cells were able to accumulate the highest amount of Se compared to other foreign elements. More importantly, the Se accumulating bacteria were successfully recovered with an external magnetic field. We believe magnetotactic bacteria confer unique advantages of biomagnetic cell recovery and of Se accumulation, providing a new and effective methodology for bioremediation of polluted water

    Huge aneurysms of the aortic sinuses of Valsalva with leaflet perforation in an infant: A case report

    Get PDF

    Preparation of Genomic DNA from a Single Species of Uncultured Magnetotactic Bacterium by Multiple-Displacement Amplification▿ †

    No full text
    Magnetotactic bacteria comprise a phylogenetically diverse group that is capable of synthesizing intracellular magnetic particles. Although various morphotypes of magnetotactic bacteria have been observed in the environment, bacterial strains available in pure culture are currently limited to a few genera due to difficulties in their enrichment and cultivation. In order to obtain genetic information from uncultured magnetotactic bacteria, a genome preparation method that involves magnetic separation of cells, flow cytometry, and multiple displacement amplification (MDA) using φ29 polymerase was used in this study. The conditions for the MDA reaction using samples containing 1 to 100 cells were evaluated using a pure-culture magnetotactic bacterium, “Magnetospirillum magneticum AMB-1,” whose complete genome sequence is available. Uniform gene amplification was confirmed by quantitative PCR (Q-PCR) when 100 cells were used as a template. This method was then applied for genome preparation of uncultured magnetotactic bacteria from complex bacterial communities in an aquatic environment. A sample containing 100 cells of the uncultured magnetotactic coccus was prepared by magnetic cell separation and flow cytometry and used as an MDA template. 16S rRNA sequence analysis of the MDA product from these 100 cells revealed that the amplified genomic DNA was from a single species of magnetotactic bacterium that was phylogenetically affiliated with magnetotactic cocci in the Alphaproteobacteria. The combined use of magnetic separation, flow cytometry, and MDA provides a new strategy to access individual genetic information from magnetotactic bacteria in environmental samples

    Simultaneously Discrete Biomineralization of Magnetite and Tellurium Nanocrystals in Magnetotactic Bacteria▿

    No full text
    Magnetotactic bacteria synthesize intracellular magnetosomes comprising membrane-enveloped magnetite crystals within the cell which can be manipulated by a magnetic field. Here, we report the first example of tellurium uptake and crystallization within a magnetotactic bacterial strain, Magnetospirillum magneticum AMB-1. These bacteria independently crystallize tellurium and magnetite within the cell. This is also highly significant as tellurite (TeO32−), an oxyanion of tellurium, is harmful to both prokaryotes and eukaryotes. Additionally, due to its increasing use in high-technology products, tellurium is very precious and commercially desirable. The use of microorganisms to recover such molecules from polluted water has been considered as a promising bioremediation technique. However, cell recovery is a bottleneck in the development of this approach. Recently, using the magnetic property of magnetotactic bacteria and a cell surface modification technology, the magnetic recovery of Cd2+ adsorbed onto the cell surface was reported. Crystallization within the cell enables approximately 70 times more bioaccumulation of the pollutant per cell than cell surface adsorption, while utilizing successful recovery with a magnetic field. This fascinating dual crystallization of magnetite and tellurium by magnetotactic bacteria presents an ideal system for both bioremediation and magnetic recovery of tellurite
    corecore