48 research outputs found

    Expression of human thromboxane synthase using a baculovirus system

    Get PDF
    AbstractHuman thromboxane (TX) synthase (EC 5.3.99.5) was produced by the baculovirus expression system using cDNA encoding human TX synthase [(1991) Biochem. Biophys. Res. Commun. 78, 1479-1484]. A recombinant baculovirus TXS7 was expressed in Spodoptera frugiperda Sf9 insect cells. The expressed protein was recognized by monoclonal antibody, Kon 7 raised against human TX synthase [(1990) Blood 76, 80-85]. The recombinant TX synthase catalyzed the conversion of prostaglandin (PG) H2 to TXA2 and 12-hydroxy-heptadecatrienoic acid (HHT). Both conversions of PGH2 to TXA2 and HHT by the expressed TX synthase were completely inhibited by a specific TX synthase inhibitor, OKY-046 (5 μM)

    Expression of human thromboxane synthase using a baculovirus system

    Get PDF
    AbstractHuman thromboxane (TX) synthase (EC 5.3.99.5) was produced by the baculovirus expression system using cDNA encoding human TX synthase [(1991) Biochem. Biophys. Res. Commun. 78, 1479-1484]. A recombinant baculovirus TXS7 was expressed in Spodoptera frugiperda Sf9 insect cells. The expressed protein was recognized by monoclonal antibody, Kon 7 raised against human TX synthase [(1990) Blood 76, 80-85]. The recombinant TX synthase catalyzed the conversion of prostaglandin (PG) H2 to TXA2 and 12-hydroxy-heptadecatrienoic acid (HHT). Both conversions of PGH2 to TXA2 and HHT by the expressed TX synthase were completely inhibited by a specific TX synthase inhibitor, OKY-046 (5 μM)

    Pituitary adenylate cyclase-activating polypeptide type 1 receptor signaling evokes long-lasting nociceptive behaviors through the activation of spinal astrocytes in mice

    Get PDF
    AbstractIntrathecal (i.t.) administration of pituitary adenylate cyclase-activating polypeptide (PACAP) induces long-lasting nociceptive behaviors for more than 60 min in mice, while the involvement of PACAP type1 receptor (PAC1-R) has not been clarified yet. The present study investigated signaling mechanisms of the PACAP-induced prolonged nociceptive behaviors. Single i.t. injection of a selective PAC1-R agonist, maxadilan (Max), mimicked nociceptive behaviors in a dose-dependent manner similar to PACAP. Pre- or post-treatment of a selective PAC1-R antagonist, max.d.4, significantly inhibited the nociceptive behaviors by PACAP or Max. Coadministration of a protein kinase A inhibitor, Rp-8-Br-cAMPS, a mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase inhibitor, PD98059 or a c-Jun N-terminal kinase (JNK) inhibitor, SP600125, significantly inhibited the nociceptive behaviors by Max. Immunohistochemistry and immunoblotting analysis revealed that spinal administration of Max-induced ERK phosphorylation and JNK phosphorylation, and also augmented an astrocyte marker, glial fibrillary acidic protein in mouse spinal cord. Furthermore, an astroglial toxin, l-α-aminoadipate, significantly attenuated the development of the nociceptive behaviors and ERK phosphorylation by Max. These results suggest that the activation of spinal PAC1-R induces long-lasting nociception through the interaction of neurons and astrocytes

    Support for UNRWA's survival

    Get PDF
    The United Nations Relief and Works Agency for Palestine Refugees in the Near East (UNRWA) provides life-saving humanitarian aid for 5·4 million Palestine refugees now entering their eighth decade of statelessness and conflict. About a third of Palestine refugees still live in 58 recognised camps. UNRWA operates 702 schools and 144 health centres, some of which are affected by the ongoing humanitarian disasters in Syria and the Gaza Strip. It has dramatically reduced the prevalence of infectious diseases, mortality, and illiteracy. Its social services include rebuilding infrastructure and homes that have been destroyed by conflict and providing cash assistance and micro-finance loans for Palestinians whose rights are curtailed and who are denied the right of return to their homeland

    Possible roles of mitochondrial dysfunctions and <i>SIRT1</i> in major depressive disorder

    No full text

    GPR40/FFAR1 deficient mice increase noradrenaline levels in the brain and exhibit abnormal behavior

    Get PDF
    The free fatty acid receptor 1 (GPR40/FFAR1) is a G protein-coupled receptor, which is activated by long chain fatty acids. We have previously demonstrated that activation of brain GPR40/FFAR1 exerts an antinociceptive effect that is mediated by the modulation of the descending pain control system. However, it is unclear whether brain GPR40/FFAR1 contributes to emotional function. In this study, we investigated the involvement of GPR40/FFAR1 in emotional behavior using GPR40/FFAR1 deficient (knockout, KO) mice. The emotional behavior in wild and KO male mice was evaluated at 9–10 weeks of age by the elevated plus-maze test, open field test, social interaction test, and sucrose preference test. Brain monoamines levels were measured using LC–MS/MS. The elevated plus-maze test and open field tests revealed that the KO mice reduced anxiety-like behavior. There were no differences in locomotor activity or social behavior between the wild and KO mice. In the sucrose preference test, the KO mice showed reduction in sucrose preference and intake. The level of noradrenaline was higher in the hippocampus, medulla oblongata, hypothalamus and midbrain of KO mice. Therefore, these results suggest that brain GPR40/FFAR1 is associated with anxiety- and depression-related behavior regulated by the increment of noradrenaline in the brain

    The novel small-molecule antagonist of PAC1 receptor attenuates formalin-induced inflammatory pain behaviors in mice

    No full text
    We recently developed PA-8, a novel small-molecule antagonist of PACAP type 1 (PAC1) receptor. In the present study, we examined whether PA-8 was effective against formalin-induced inflammatory pain in mice. Both intrathecal and oral administration of PA-8 resulted in the dose-dependent attenuation of the second phase of formalin-induced nociceptive responses. PA-8 also inhibited c-fos upregulation in the ipsilateral dorsal horn of the spinal cord. The results suggested that PACAP-PAC1 receptor signaling system in the spinal cord were primarily involved in the transmission of inflammatory pain, and PA-8 could be useful for the development of novel analgesics for treating inflammatory pain. Keywords: PACAP type 1 (PAC1) receptor, Small-molecule antagonist, Inflammatory pai
    corecore