3 research outputs found

    Impact of Human Cytomegalovirus Infection and its Immune Response on Survival of Patients with Ovarian Cancer

    No full text
    Human cytomegalovirus (HCMV) has been detected in various types of tumors. We studied the prevalence of HCMV in ovarian cancer and its relation to clinical outcome. Paraffin-embedded tissues obtained prospectively from 45 patients with ovarian cancer and 30 patients with benign ovarian cystadenoma were analyzed for expression of HCMV immediate-early protein (IE) and HCMV tegument protein (pp65) by immunohistochemistry. Plasma was analyzed for HCMV serology. HCMV-IgG levels were higher in patients with ovarian cancer or benign cystadenoma than in age-matched controls (P = .002, P < .0001, respectively). HCMV IgM was detected in 12% of ovarian cancer patients and 3% of patients with benign tumors but was absent in controls. In patients with ovarian cancer, higher IgG levels were associated with better outcomes (P = .04). Extensive HCMV-IE protein expression was detected in 75% of ovarian cancers and 26% of benign tumors; pp65 was detected in 67% of ovarian cancers and 14% of benign tumors. A higher grade of HCMV infection was associated with higher stage of disease. Extensive HCMV-pp65 expression was associated with shorter median overall survival than focal expression (39 versus 42.5 months, P = .03). At study closure, 58% of ovarian cancer patients with focal pp65 expression were alive versus 27% of patients with extensive pp65 expression (P = .03). Thus, HCMV proteins are detected at different levels in ovarian tumors and benign cystadenomas. Ovarian cancer patients with focal HCMV-pp65 expression in their tumors and high IgG levels against HCMV lived longer, highlighting a need for in-depth studies of the oncomodulatory role of HCMV in ovarian cancer

    Establishment and characterization of an orthotopic patient-derived Group 3 medulloblastoma model for preclinical drug evaluation

    No full text
    Medulloblastomas comprise a heterogeneous group of tumours and can be subdivided into four molecular subgroups (WNT, SHH, Group 3 and Group 4) with distinct prognosis, biological behaviour and implications for targeted therapies. Few experimental models exist of the aggressive and poorly characterized Group 3 tumours. In order to establish a reproducible transplantable Group 3 medulloblastoma model for preclinical therapeutic studies, we acquired a patient-derived tumour sphere culture and inoculated low-passage spheres into the cerebellums of NOD-scid mice. Mice developed symptoms of brain tumours with a latency of 17-18 weeks. Neurosphere cultures were re-established and serially transplanted for 3 generations, with a negative correlation between tumour latency and numbers of injected cells. Xenografts replicated the phenotype of the primary tumour, including high degree of clustering in DNA methylation analysis, high proliferation, expression of tumour markers, MYC amplification and elevated MYC expression, and sensitivity to the MYC inhibitor JQ1. Xenografts maintained maintained expression of tumour-derived VEGFA and stromal-derived COX-2. VEGFA, COX-2 and c-Myc are highly expressed in Group 3 compared to other medulloblastoma subgroups, suggesting that these molecules are relevant therapeutic targets in Group 3 medulloblastoma
    corecore