6,589 research outputs found

    Very-wide-field camera. Proposal of Space Astronomy Laboratory for second Spacelab mission

    Get PDF
    A proposal is made for inclusion of a very wide field camera onboard Spacelab. Its scientific program is outlined: detection and photometry, spectrography, and star and starlike object photography. The optics, receptor, and mechanical structure are described. Scientific and technical constraints are discussed, and a development plan is detailed. The dust contamination of Spacelab using the camera was also studied

    Brane world models need low string scale

    Get PDF
    Models with large extra dimensions offer the possibility of the Planck scale being of order the electroweak scale, thus alleviating the gauge hierarchy problem. We show that these models suffer from a breakdown of unitarity at around three quarters of the low effective Planck scale. An obvious candidate to fix the unitarity problem is string theory. We therefore argue that it is necessary for the string scale to appear below the effective Planck scale and that the first signature of such models would be string resonances. We further translate experimental bounds on the string scale into bounds on the effective Planck scale

    Mission-Aware Cyber-Physical Optimization on a Tabletop Satellite

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106493/1/AIAA2013-4807.pd

    Elucidating the Influence of the Activation Energy on Reaction Rates by Simulations Based on a Simple Particle Model

    Get PDF
    An application for visualizing the dynamic properties of an equimolar binary mixture of isotropic reactive particles is presented. By introducing a user selectable choice for the activation energy, the application is useful to demonstrate qualitatively that the reaction rate depends on the above choice and on temperature. The application is based on a 2D realistic dynamic model where atoms move because of their thermal energies and the trajectories are determined by solving numerically Newton’s laws according to a Molecular Dynamics (MD) scheme. Collisions are monitored as time progresses, and every time the collision energy is larger than the selected activation energy, a reactive event occurs. By examining the time evolution of the configurations, it is possible to observe that the number of reactive collisions is always smaller than the total number of collisions. However, the number of reactive events increases on raising the temperature and/or by decreasing the activation energy. The above observations, as well as more quantitative analyses of the simulation data, are useful in elucidating the connections existing among particle kinetic energy, temperature, and activation energy of the reaction. The application can be used at different levels of detail and in different instruction levels. Qualitative visual observations of the progress of the reaction are suitable at all levels of instruction. Systematic investigations on the effect of changes of temperature and activation energy, suitable for senior high school and college courses and useful to gain insight into kinetic models and Arrhenius’ law, are also reported

    Symmetry Scheme for Amino Acid Codons

    Full text link
    Group theoretical concepts are invoked in a specific model to explain how only twenty amino acids occur in nature out of a possible sixty four. The methods we use enable us to justify the occurrence of the recently discovered twenty first amino acid selenocysteine, and also enables us to predict the possible existence of two more, as yet undiscovered amino acids.Comment: 18 pages which include 4 figures & 3 table

    Rotational Feshbach Resonances in Ultracold Molecular Collisions

    Full text link
    In collisions at ultralow temperatures, molecules will possess Feshbach resonances, foreign to ultracold atoms, whose virtual excited states consist of rotations of the molecules. We estimate the mean spacing and mean widths of these resonant states, exploiting the fact the molecular collisions at low energy display chaotic motion. As examples, we consider the experimentally relevant molecules O_2, OH, and PbO. The density of s-wave resonant states for these species is quite high, implying that a large number of narrow resonant states will exist.Comment: 4 pages, 2 figure

    The laws of similitude and crack propagation

    Full text link
    The mechanics of cracking follow the laws of similitude in an odd sense. As a result, crack load-external displacement-crack extension data are not usually non-dimensionalized. It follows that a new "group" should be used (analogous to the Reynolds, Froude or Cauchy numbers) when scaling ship ice-breaking resistance from tests of models in ice-towing-tanks.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/22303/1/0000747.pd

    Critical role of p38 MAPK for regeneration of the sciatic nerve following crush injury in vivo

    Get PDF
    BACKGROUND The physiological function of p38α, which is an isoform of p38 MAPK, has been investigated previously in several studies using pharmacological inhibitors. However, the results regarding whether p38α promotes or inhibits nerve regeneration in vivo have been controversial. METHODS We generated novel p38α mutant mice (sem mice) with a point mutation in the region encoding the p38α substrate-docking-site, which serves as a limited loss-of-function model of p38α. In the present study, we utilized sem mice and wild-type littermates (wt mice) to investigate the physiological role of p38α in nerve regeneration following crush injuries. RESULTS At four weeks after crush injury, the average axon diameter and the average axon area in sem mice were significantly smaller than those in wt mice. The average myelin sheath thickness in sem mice was reduced compared to wt mice, but no significant difference was observed in the G-ratio between the two groups. The sciatic functional index value demonstrated that functional nerve recovery in sem mice following crush injury was delayed, which is consistent with the histological findings. To investigate the underlying mechanisms of these findings, we examined inflammatory responses of the sciatic nerve by immunohistochemistry and western blotting. At an early phase following crush injury, sem mice showed remarkably lower expression of inflammatory cytokines, such as TNF-α and IL-1β, than wt mice. The expression of Caspase-3 and Tenascin-C were also lower in sem mice. Conversely, at a late phase of the response, sem mice showed considerably higher expression of TNF-α and of IL-1β with lower expression of S-100 than wt mice. CONCLUSIONS This is the first study of the physiological role of p38 MAPK in nerve regeneration that does not rely on the use of pharmacological inhibitors. Our results indicate that p38α insufficiency may cause an inflammatory disorder, resulting in a delay of histological and functional nerve recovery following crush injury. We conclude that p38 MAPK has an important physiological role in nerve regeneration and may be important for controlling both initiation of inflammation and recovery from nerve injury.Naoki Kato, Masahito Matsumoto, Masakazu Kogawa, Gerald J Atkins, David M Findlay, Takahiko Fujikawa, Hiromi Oda and Masato Ogat
    • …
    corecore