22 research outputs found

    Neuroprotective Effects of Centella asiatica against Intracerebroventricular Colchicine-Induced Cognitive Impairment and Oxidative Stress

    Get PDF
    Oxidative stress appears to be an early event involved in the pathogenesis of Alzheimer's disease. The present study was designed to investigate the neuroprotective effects of Centella asiatica against colchicine-induced memory impairment and oxidative damage in rats. Colchicine (15 μg/5 μL) was administered intracerebroventricularly in the lateral ventricle of male wistar rats. Morris water maze and plus-maze performance tests were used to assess memory performance tasks. Various biochemical parameters such as lipid peroxidation, nitrite, reduced glutathione, glutathione-S-transferase, superoxide dismutase, acetylcholinesterase were also assessed. ICV colchicine resulted marked memory impairment and oxidative damage. Chronic treatment with Centella asiatica extract (150 and 300 mg/kg, p.o.) for a period of 25 days, beginning 4 days prior to colchicine administration, significantly attenuated colchicine-induced memory impairment and oxidative damage. Besides, Centella asiatica significantly reversed colchicines administered increase in acetylcholinesterase activity. Thus, present study indicates protective effect of Centella asiatica against colchicine-induced cognitive impairment and associated oxidative damage

    Centella asiatica Attenuates D-Galactose-Induced Cognitive Impairment, Oxidative and Mitochondrial Dysfunction in Mice

    Get PDF
    D-galactose induced neurotoxicity is well known model for studying aging and related oxidative damage and memory impairment. Aging is a biological process, characterized by the gradual loss of physiological functions by unknown mechanism. Centella asiatica, Indian pennywort has been documented in the treatment of various neurological disorders including aging. Therefore, present study has been conducted in order to explore the possible role of Centella asiatica against D-galactose induced cognitive impairment, oxidative and mitochondrial dysfunction in mice. Chronic administration of D-galactose (100 mg/kg s.c.) for a period of six weeks significantly impaired cognitive task (both in both Morris water maze and elevated plus maze) and oxidative defense (Increased lipid peroxidation, nitrite concentration and decreased activity of superoxide dismutase, catalase and non-protein thiols) and impaired mitochondrial complex (I, II and III) enzymes activities as compared to sham group. Six weeks Centella asiatica (150 and 300 mg/kg, p.o) treatment significantly improved behavioral alterations, oxidative damage and mitochondrial enzyme complex activities as compared to contro l (D-galactose). Centella asiatica also attenuated enhanced acetylcholine esterase enzyme level in D-galactose senescence mice. Present study highlights the protective effect of Centella asiatica against D-galactose induced behavioral, biochemical and mitochondrial dysfunction in mice

    Growth Based Strategy Formulation for Selection of Murrah Buffalo at Early Ages

    Get PDF
    Buffaloes form the backbone of farmers in Indian dairy industry. The birth weight and weight at different age of an animal characterizes expression of animals’ genotype and serves as reliable aid to selection for efficient performance of livestock. The data on body weight were collected on 726 new born female calves and 642 male calves of livestock farm, NDRI, Karnal. Growth curves for both male and female buffalo calves were prepared by plotting mean of the body weight against age in weeks and Growth band were prepared by computing upper and lower limits of average body weights (95% confidence limit), from birth to 6 month of age, at weekly interval. The growth curves were found to be linear for both male and female buffalo calves. Growth band was narrow at the birth, but it goes on widening with age at successive weeks. The presentation of growth band is expected to be useful in making an efficient decision for proper management of animals at various ages

    Dynamic Phenotypic Switching and Group Behavior Help Non-Small Cell Lung Cancer Cells Evade Chemotherapy

    Get PDF
    Drug resistance, a major challenge in cancer therapy, is typically attributed to mutations and genetic heterogeneity. Emerging evidence suggests that dynamic cellular interactions and group behavior also contribute to drug resistance. However, the underlying mechanisms remain poorly understood. Here, we present a new mathematical approach with game theoretical underpinnings that we developed to model real-time growth data of non-small cell lung cancer (NSCLC) cells and discern patterns in response to treatment with cisplatin. We show that the cisplatin-sensitive and cisplatin-tolerant NSCLC cells, when co-cultured in the absence or presence of the drug, display dynamic group behavior strategies. Tolerant cells exhibit a \u27persister-like\u27 behavior and are attenuated by sensitive cells; they also appear to \u27educate\u27 sensitive cells to evade chemotherapy. Further, tolerant cells can switch phenotypes to become sensitive, especially at low cisplatin concentrations. Finally, switching treatment from continuous to an intermittent regimen can attenuate the emergence of tolerant cells, suggesting that intermittent chemotherapy may improve outcomes in lung cancer

    Effect of St. John's Wort (Hypericum perforatum) treatment on restraint stress-induced behavioral and biochemical alteration in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A stressful stimulus is a crucial determinant of health and disease. Antidepressants are used to manage stress and their related effects. The present study was designed to investigate the effect of St. John's Wort (<it>Hypericum perforatum</it>) in restraint stress-induced behavioral and biochemical alterations in mice.</p> <p>Methods</p> <p>Animals were immobilized for a period of 6 hr. St. John's Wort (50 and 100 mg/kg) was administered 30 minutes before the animals were subjecting to acute immobilized stress. Various behavioral tests parameters for anxiety, locomotor activity and nociceptive threshold were assessed followed by biochemical assessments (malondialdehyde level, glutathione, catalase, nitrite and protein) subsequently.</p> <p>Results</p> <p>6-hr acute restraint stress caused severe anxiety like behavior, antinociception and impaired locomotor activity as compared to unstressed animals. Biochemical analyses revealed an increase in malondialdehyde, nitrites concentration, depletion of reduced glutathione and catalase activity as compared to unstressed animal brain. Five days St. John's Wort treatment in a dose of 50 mg/kg and 100 mg/kg significantly attenuated restraint stress-induced behavioral (improved locomotor activity, reduced tail flick latency and antianxiety like effect) and oxidative damage as compared to control (restraint stress).</p> <p>Conclusion</p> <p>Present study highlights the modest activity of St. John's Wort against acute restraint stress induced modification.</p

    Plausible role of INPP4A dysregulation in idiopathic pulmonary fibrosis

    No full text
    Abstract INPP4A has been shown to be involved in the regulation of cell proliferation and apoptosis of multiple cell types including fibroblasts. Previous reports from our group have demonstrated the role of inositol polyphosphate 4‐phosphatase Type I A (INPP4A) in these functions. Though existing evidences suggest a critical role for INPP4A in the maintenance of lung homeostasis, its role in chronic lung diseases is relatively under explored. In the current study, we made an attempt to understand the regulation of INPP4A in idiopathic pulmonary fibrosis (IPF). Through integration of relevant INPP4A gene expression data from public repositories with our results from in vitro experiments and mouse models, we show that INPP4A is altered in IPF. Interestingly, the direction of the change is dependent both on the disease stage and the region of the lung used. INPP4A was found to be upregulated when analyzed in lung sample representative of the whole lung, but was downregulated in the fibrotic regions of the lung. Similarly, INPP4A was found to be high, compared to controls, only in the early stage of the disease. Though the observed increase in INPP4A was found to be negatively correlated to physiological indices, FVC, and DLCO, of lung function, treatment with anti‐INPP4A antibody worsened the condition in bleomycin treated mice. These contrasting results taken together are suggestive of a nuanced regulation of INPP4A in IPF which is dependent on the disease stage, cellular state and extent of fibrosis in the lung region being analyzed
    corecore