111 research outputs found

    Cloud computingβ€”effect of evolutionary algorithm on load balancing

    Full text link
    Β© Springer International Publishing Switzerland 2015 In cloud computing due to the multi-tenancy of the resources, there is an essential need for effective load management to ensure an efficient load sharing. Depends on the structure of the tasks, different algorithms could be applied to distribute the load. Workflow scheduling as one of those load distribution algorithms, is specifically designed to schedule the dependent tasks on available resources. Considering a job as an elastic network of dependent tasks, this paper describes how evolutionary algorithm, with its mathematical apparatus, could be applied as workflow scheduling in cloud computing. In this research, the impact of Generalized Spring Tensor Model on workflow load balancing, in context of mathematical patterns have been studied. This research can establish patterns in cloud computing which can be applied in designing the heuristic workflow load balancing algorithms to identify the load patterns of the cloud network. Furthermore, the outcome of this research can help the end users to recognize the threats of tasks failure in processing the e-business and e-since data in cloud environment

    Perturbation-Response Scanning Reveals Ligand Entry-Exit Mechanisms of Ferric Binding Protein

    Get PDF
    We study apo and holo forms of the bacterial ferric binding protein (FBP) which exhibits the so-called ferric transport dilemma: it uptakes iron from the host with remarkable affinity, yet releases it with ease in the cytoplasm for subsequent use. The observations fit the β€œconformational selection” model whereby the existence of a weakly populated, higher energy conformation that is stabilized in the presence of the ligand is proposed. We introduce a new tool that we term perturbation-response scanning (PRS) for the analysis of remote control strategies utilized. The approach relies on the systematic use of computational perturbation/response techniques based on linear response theory, by sequentially applying directed forces on single-residues along the chain and recording the resulting relative changes in the residue coordinates. We further obtain closed-form expressions for the magnitude and the directionality of the response. Using PRS, we study the ligand release mechanisms of FBP and support the findings by molecular dynamics simulations. We find that the residue-by-residue displacements between the apo and the holo forms, as determined from the X-ray structures, are faithfully reproduced by perturbations applied on the majority of the residues of the apo form. However, once the stabilizing ligand (Fe) is integrated to the system in holo FBP, perturbing only a few select residues successfully reproduces the experimental displacements. Thus, iron uptake by FBP is a favored process in the fluctuating environment of the protein, whereas iron release is controlled by mechanisms including chelation and allostery. The directional analysis that we implement in the PRS methodology implicates the latter mechanism by leading to a few distant, charged, and exposed loop residues. Upon perturbing these, irrespective of the direction of the operating forces, we find that the cap residues involved in iron release are made to operate coherently, facilitating release of the ion

    Nonlinearity of Mechanochemical Motions in Motor Proteins

    Get PDF
    The assumption of linear response of protein molecules to thermal noise or structural perturbations, such as ligand binding or detachment, is broadly used in the studies of protein dynamics. Conformational motions in proteins are traditionally analyzed in terms of normal modes and experimental data on thermal fluctuations in such macromolecules is also usually interpreted in terms of the excitation of normal modes. We have chosen two important protein motors - myosin V and kinesin KIF1A - and performed numerical investigations of their conformational relaxation properties within the coarse-grained elastic network approximation. We have found that the linearity assumption is deficient for ligand-induced conformational motions and can even be violated for characteristic thermal fluctuations. The deficiency is particularly pronounced in KIF1A where the normal mode description fails completely in describing functional mechanochemical motions. These results indicate that important assumptions of the theory of protein dynamics may need to be reconsidered. Neither a single normal mode, nor a superposition of such modes yield an approximation of strongly nonlinear dynamics.Comment: 10 pages, 6 figure

    On the origin of the Boson peak in globular proteins

    Full text link
    We study the Boson Peak phenomenology experimentally observed in globular proteins by means of elastic network models. These models are suitable for an analytic treatment in the framework of Euclidean Random Matrix theory, whose predictions can be numerically tested on real proteins structures. We find that the emergence of the Boson Peak is strictly related to an intrinsic mechanical instability of the protein, in close similarity to what is thought to happen in glasses. The biological implications of this conclusion are also discussed by focusing on a representative case study.Comment: Proceedings of the X International Workshop on Disordered Systems, Molveno (2006

    Conformational Proofreading: The Impact of Conformational Changes on the Specificity of Molecular Recognition

    Get PDF
    To perform recognition, molecules must locate and specifically bind their targets within a noisy biochemical environment with many look-alikes. Molecular recognition processes, especially the induced-fit mechanism, are known to involve conformational changes. This raises a basic question: Does molecular recognition gain any advantage by such conformational changes? By introducing a simple statistical-mechanics approach, we study the effect of conformation and flexibility on the quality of recognition processes. Our model relates specificity to the conformation of the participant molecules and thus suggests a possible answer: Optimal specificity is achieved when the ligand is slightly off target; that is, a conformational mismatch between the ligand and its main target improves the selectivity of the process. This indicates that deformations upon binding serve as a conformational proofreading mechanism, which may be selected for via evolution

    On the conservation of the slow conformational dynamics within the amino acid kinase family: NAGK the paradigm

    Get PDF
    N-Acetyl-L-Glutamate Kinase (NAGK) is the structural paradigm for examining the catalytic mechanisms and dynamics of amino acid kinase family members. Given that the slow conformational dynamics of the NAGK (at the microseconds time scale or slower) may be rate-limiting, it is of importance to assess the mechanisms of the most cooperative modes of motion intrinsically accessible to this enzyme. Here, we present the results from normal mode analysis using an elastic network model representation, which shows that the conformational mechanisms for substrate binding by NAGK strongly correlate with the intrinsic dynamics of the enzyme in the unbound form. We further analyzed the potential mechanisms of allosteric signalling within NAGK using a Markov model for network communication. Comparative analysis of the dynamics of family members strongly suggests that the low-frequency modes of motion and the associated intramolecular couplings that establish signal transduction are highly conserved among family members, in support of the paradigm sequence→structure→dynamics→function © 2010 Marcos et al

    Prediction of Optimal Folding Routes of Proteins That Satisfy the Principle of Lowest Entropy Loss: Dynamic Contact Maps and Optimal Control

    Get PDF
    An optimization model is introduced in which proteins try to evade high energy regions of the folding landscape, and prefer low entropy loss routes during folding. We make use of the framework of optimal control whose convenient solution provides practical and useful insight into the sequence of events during folding. We assume that the native state is available. As the protein folds, it makes different set of contacts at different folding steps. The dynamic contact map is constructed from these contacts. The topology of the dynamic contact map changes during the course of folding and this information is utilized in the dynamic optimization model. The solution is obtained using the optimal control theory. We show that the optimal solution can be cast into the form of a Gaussian Network that governs the optimal folding dynamics. Simulation results on three examples (CI2, Sso7d and Villin) show that folding starts by the formation of local clusters. Non-local clusters generally require the formation of several local clusters. Non-local clusters form cooperatively and not sequentially. We also observe that the optimal controller prefers β€œzipping” or small loop closure steps during folding. The folding routes predicted by the proposed method bear strong resemblance to the results in the literature

    Static and dynamic characteristics of protein contact networks

    Full text link
    The principles underlying protein folding remains one of Nature's puzzles with important practical consequences for Life. An approach that has gathered momentum since the late 1990's, looks at protein hetero-polymers and their folding process through the lens of complex network analysis. Consequently, there is now a body of empirical studies describing topological characteristics of protein macro-molecules through their contact networks and linking these topological characteristics to protein folding. The present paper is primarily a review of this rich area. But it delves deeper into certain aspects by emphasizing short-range and long-range links, and suggests unconventional places where "power-laws" may be lurking within protein contact networks. Further, it considers the dynamical view of protein contact networks. This closer scrutiny of protein contact networks raises new questions for further research, and identifies new regularities which may be useful to parameterize a network approach to protein folding. Preliminary experiments with such a model confirm that the regularities we identified cannot be easily reproduced through random effects. Indeed, the grand challenge of protein folding is to elucidate the process(es) which not only generates the specific and diverse linkage patterns of protein contact networks, but also reproduces the dynamic behavior of proteins as they fold. Keywords: network analysis, protein contact networks, protein foldingComment: Added Appendix

    Characterization of the Channel Constriction Allowing the Access of the Substrate to the Active Site of Yeast Oxidosqualene Cyclase

    Get PDF
    In oxidosqualene cyclases (OSCs), an enzyme which has been extensively studied as a target for hypocholesterolemic or antifungal drugs, a lipophilic channel connects the surface of the protein with the active site cavity. Active site and channel are separated by a narrow constriction operating as a mobile gate for the substrate passage. In Saccharomyces cerevisiae OSC, two aminoacidic residues of the channel/constriction apparatus, Ala525 and Glu526, were previously showed as critical for maintaining the enzyme functionality. In this work sixteen novel mutants, each bearing a substitution at or around the channel constrictions, were tested for their enzymatic activity. Modelling studies showed that the most functionality-lowering substitutions deeply alter the H-bond network involving the channel/constriction apparatus. A rotation of Tyr239 is proposed as part of the mechanism permitting the access of the substrate to the active site. The inhibition of OSC by squalene was used as a tool for understanding whether the residues under study are involved in a pre-catalytic selection and docking of the substrate oxidosqualene

    Change in Allosteric Network Affects Binding Affinities of PDZ Domains: Analysis through Perturbation Response Scanning

    Get PDF
    The allosteric mechanism plays a key role in cellular functions of several PDZ domain proteins (PDZs) and is directly linked to pharmaceutical applications; however, it is a challenge to elaborate the nature and extent of these allosteric interactions. One solution to this problem is to explore the dynamics of PDZs, which may provide insights about how intramolecular communication occurs within a single domain. Here, we develop an advancement of perturbation response scanning (PRS) that couples elastic network models with linear response theory (LRT) to predict key residues in allosteric transitions of the two most studied PDZs (PSD-95 PDZ3 domain and hPTP1E PDZ2 domain). With PRS, we first identify the residues that give the highest mean square fluctuation response upon perturbing the binding sites. Strikingly, we observe that the residues with the highest mean square fluctuation response agree with experimentally determined residues involved in allosteric transitions. Second, we construct the allosteric pathways by linking the residues giving the same directional response upon perturbation of the binding sites. The predicted intramolecular communication pathways reveal that PSD-95 and hPTP1E have different pathways through the dynamic coupling of different residue pairs. Moreover, our analysis provides a molecular understanding of experimentally observed hidden allostery of PSD-95. We show that removing the distal third alpha helix from the binding site alters the allosteric pathway and decreases the binding affinity. Overall, these results indicate that (i) dynamics plays a key role in allosteric regulations of PDZs, (ii) the local changes in the residue interactions can lead to significant changes in the dynamics of allosteric regulations, and (iii) this might be the mechanism that each PDZ uses to tailor their binding specificities regulation
    • …
    corecore