14 research outputs found

    Feasibility of charge exchange spectroscopy fast helium measurements on ITER

    Get PDF
    \u3cp\u3eThe feasibility to measure fast alpha particles using Active Charge Exchange Recombination Spectroscopy (CXRS) on ITER is investigated. Through modelling of the charge exchange spectral line for fast ions together with the expected background emission, the signal-to-noise ratio has been calculated as a function of the diagnostic design parameters. Combining the CXRS data from both the heating and the diagnostic neutral beams on ITER, information on the fast ion energy spectrum up to 1 MeV can be obtained for the parameters of the ITER core CXRS diagnostic design, provided that the signal is binned in 100 keV bins and a time resolution of Isec is used.\u3c/p\u3

    Understanding helium transport:experimental and theoretical investigations of low-Z impurity transport at ASDEX Upgrade

    No full text
    \u3cp\u3eThe presence of helium is fundamentally connected to the performance of a fusion reactor, as fusion-produced helium is expected to heat the plasma bulk, while He 'ash' accumulation dilutes the fusion fuel. An understanding of helium transport via experimentally validated theoretical models of the low-Z impurity turbulent transport is indispensable to predict the helium density profile in future fusion devices. At ASDEX Upgrade, detailed, multi-species investigations of low-Z impurity transport have been undertaken in dedicated experiments, resulting in an extensive database of helium and boron density profiles over a wide range of parameters relevant for turbulent transport (normalised gradients of the electron density, the ion temperature, and the toroidal rotation profiles, the collisionality and the electron to ion temperature ratio). Helium is not found to accumulate in the parameter space investigated, as the shape of the helium density profile follows largely that of the electron density. Helium is observed to be as peaked as the electron density at high electron cyclotron resonance heating fraction, and less peaked than the electron density at high neutral beam heating fraction. The boron density profile is found to be consistently less peaked than the electron density profile. Detailed comparisons of the experimental density gradients of both impurities with quasilinear gyrokinetic simulations have shown that a qualitative agreement between experiment and theory cannot always be obtained, with strong discrepancies observed in some cases.\u3c/p\u3

    Bulk ion heating with ICRF waves in Tokamaks

    No full text
    Heating with ICRF waves is a well-established method on present-day tokamaks and one of the heating systems foreseen for ITER. However, further work is still needed to test and optimize its performance in fusion devices with metallic high-Z plasma facing components (PFCs) in preparation of ITER and DEMO operation. This is of particular importance for the bulk ion heating capabilities of ICRF waves. Efficient bulk ion heating with the standard ITER ICRF scheme, i.e. the second harmonic heating of tritium with or without 3He minority, was demonstrated in experiments carried out in deuterium-tritium plasmas on JET and TFTR and is confirmed by ICRF modelling. This paper focuses on recent experiments with 3He minority heating for bulk ion heating on the ASDEX Upgrade (AUG) tokamak with ITER-relevant all-tungsten PFCs. An increase of 80% in the central ion temperature Ti from 3 to 5.5 keV was achieved when 3 MW of ICRF power tuned to the central 3He ion cyclotron resonance was added to 4.5 MW of deuterium NBI. The radial gradient of the Ti profile reached locally values up to about 50 keV/m and the normalized logarithmic ion temperature gradients R/LTi of about 20, which are unusually large for AUG plasmas. The large changes in the Ti profiles were accompanied by significant changes in measured plasma toroidal rotation, plasma impurity profiles and MHD activity, which indicate concomitant changes in plasma properties with the application of ICRF waves. When the 3He concentration was increased above the optimum range for bulk ion heating, a weaker peaking of the ion temperature profile was observed, in line with theoretical expectations

    Bulk ion heating with ICRF waves in tokamaks

    No full text
    Heating with ICRF waves is a well-established method on present-day tokamaks and one of the heating systems foreseen for ITER. However, further work is still needed to test and optimize its performance in fusion devices with metallic high-Z plasma facing components (PFCs) in preparation of ITER and DEMO operation. This is of particular importance for the bulk ion heating capabilities of ICRF waves. Efficient bulk ion heating with the standard ITER ICRF scheme, i.e. the second harmonic heating of tritium with or without 3He minority, was demonstrated in experiments carried out in deuterium-tritium plasmas on JET and TFTR and is confirmed by ICRF modelling. This paper focuses on recent experiments with 3He minority heating for bulk ion heating on the ASDEX Upgrade (AUG) tokamak with ITER-relevant all-tungsten PFCs. An increase of 80% in the central ion temperature Ti from 3 to 5.5 keV was achieved when 3 MW of ICRF power tuned to the central 3He ion cyclotron resonance was added to 4.5 MW of deuterium NBI. The radial gradient of the Ti profile reached locally values up to about 50 keV/m and the normalized logarithmic ion temperature gradients R/LTi of about 20, which are unusually large for AUG plasmas. The large changes in the Ti profiles were accompanied by significant changes in measured plasma toroidal rotation, plasma impurity profiles and MHD activity, which indicate concomitant changes in plasma properties with the application of ICRF waves. When the 3He concentration was increased above the optimum range for bulk ion heating, a weaker peaking of the ion temperature profile was observed, in line with theoretical expectations.This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.Peer Reviewe

    Validation of D–T fusion power prediction capability against 2021 JET D–T experiments

    No full text
    JET experiments using the fuel mixture envisaged for fusion power plants, deuterium and tritium (D–T), provide a unique opportunity to validate existing D–T fusion power prediction capabilities in support of future device design and operation preparation. The 2021 JET D–T experimental campaign has achieved D–T fusion powers sustained over 5 s in ITER-relevant conditions i.e. operation with the baseline or hybrid scenario in the full metallic wall. In preparation of the 2021 JET D–T experimental campaign, extensive D–T predictive modelling was carried out with several assumptions based on D discharges. To improve the validity of ITER D–T predictive modelling in the future, it is important to use the input data measured from 2021 JET D–T discharges in the present core predictive modelling, and to specify the accuracy of the D–T fusion power prediction in comparison with the experiments. This paper reports on the validation of the core integrated modelling with TRANSP, JINTRAC, and ETS coupled with a quasilinear turbulent transport model (Trapped Gyro Landau Fluid or QualLiKiz) against the measured data in 2021 JET D–T discharges. Detailed simulation settings and the heating and transport models used are described. The D–T fusion power calculated with the interpretive TRANSP runs for 38 D–T discharges (12 baseline and 26 hybrid discharges) reproduced the measured values within 20%. This indicates the additional uncertainties, that could result from the measurement error bars in kinetic profiles, impurity contents and neutron rates, and also from the beam-thermal fusion reaction modelling, are less than 20% in total. The good statistical agreement confirms that we have the capability to accurately calculate the D–T fusion power if correct kinetic profiles are predicted, and indicates that any larger deviation of the D–T fusion power prediction from the measured fusion power could be attributed to the deviation of the predicted kinetic profiles from the measured kinetic profiles in these plasma scenarios. Without any posterior adjustment of the simulation settings, the ratio of predicted D–T fusion power to the measured fusion power was found as 65%–96% for the D–T baseline and 81%–97% for D–T hybrid discharge. Possible reasons for the lower D–T prediction are discussed and future works to improve the fusion power prediction capability are suggested. The D–T predictive modelling results have also been compared to the predictive modelling of the counterpart D discharges, where the key engineering parameters are similar. Features in the predicted kinetic profiles of D–T discharges such as underprediction of ne are also found in the prediction results of the counterpart D discharges, and it leads to similar levels of the normalized neutron rate prediction between the modelling results of D–T and the counterpart D discharges. This implies that the credibility of D–T fusion power prediction could be a priori estimated by the prediction quality of the preparatory D discharges, which will be attempted before actual D–T experiments

    14 MeV calibration of JET neutron detectors-phase 1:calibration and characterization of the neutron source

    No full text
    \u3cp\u3eIn view of the planned DT operations at JET, a calibration of the JET neutron monitors at 14 MeV neutron energy is needed using a 14 MeV neutron generator deployed inside the vacuum vessel by the JET remote handling system. The target accuracy of this calibration is 10% as also required by ITER, where a precise neutron yield measurement is important, e.g. for tritium accountancy. To achieve this accuracy, the 14 MeV neutron generator selected as the calibration source has been fully characterised and calibrated prior to the in-vessel calibration of the JET monitors. This paper describes the measurements performed using different types of neutron detectors, spectrometers, calibrated long counters and activation foils which allowed us to obtain the neutron emission rate and the anisotropy of the neutron generator, i.e.The neutron flux and energy spectrum dependence on emission angle, and to derive the absolute emission rate in 4π sr. The use of high resolution diamond spectrometers made it possible to resolve the complex features of the neutron energy spectra resulting from the mixed D/T beam ions reacting with the D/T nuclei present in the neutron generator target. As the neutron generator is not a stable neutron source, several monitoring detectors were attached to it by means of an ad hoc mechanical structure to continuously monitor the neutron emission rate during the in-vessel calibration. These monitoring detectors, two diamond diodes and activation foils, have been calibrated in terms of neutrons/counts within ± 5% total uncertainty. A neutron source routine has been developed, able to produce the neutron spectra resulting from all possible reactions occurring with the D/T ions in the beam impinging on the Ti D/T target. The neutron energy spectra calculated by combining the source routine with a MCNP model of the neutron generator have been validated by the measurements. These numerical tools will be key in analysing the results from the in-vessel calibration and to derive the response of the JET neutron detectors to DT plasma neutrons starting from the response to the generator neutrons, and taking into account all the calibration circumstances.\u3c/p\u3

    Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall

    No full text
    \u3cp\u3eFor the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D-T mixtures since 1997 and the first ever D-T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D-T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D-T preparation. This intense preparation includes the review of the physics basis for the D-T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D-T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfven eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D-T campaign provides an incomparable source of information and a basis for the future D-T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.\u3c/p\u3
    corecore