14 research outputs found

    Cardiovascular phenotype of mice lacking 3-mercaptopyruvate sulfurtransferase

    Get PDF
    Rationale: Hydrogen sulfide (H2S) is a physiological mediator that regulates cardiovascular homeostasis. Three major enzymes contribute to the generation of endogenously produced H2S, namely cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). Although the biological roles of CSE and CBS have been extensively investigated in the cardiovascular system, very little is known about that of 3-MST. In the present study we determined the importance of 3-MST in the heart and blood vessels, using a genetic model with a global 3-MST deletion. Results: 3-MST is the most abundant transcript in the mouse heart, compared to CSE and CBS. 3-MST was mainly localized in smooth muscle cells and cardiomyocytes, where it was present in both the mitochondria and the cytosol. Levels of serum and cardiac H2S species were not altered in adult young (2–3 months old) 3-MST−/− mice compared to WT animals. No significant changes in the expression of CSE and CBS were observed. Additionally, 3-MST−/− mice had normal left ventricular structure and function, blood pressure and vascular reactivity. Interestingly, genetic ablation of 3-MST protected mice against myocardial ischemia reperfusion injury, and abolished the protection offered by ischemic pre- and post-conditioning. 3-MST−/− mice showed lower expression levels of thiosulfate sulfurtransferase, lower levels of cellular antioxidants and elevated basal levels of cardiac reactive oxygen species. In parallel, 3-MST−/− mice showed no significant alterations in endothelial NO synthase or downstream targets. Finally, in a separate cohort of older 3-MST−/− mice (18 months old), a hypertensive phenotype associated with cardiac hypertrophy and NO insufficiency was observed. Conclusions: Overall, genetic ablation of 3-MST impacts on the mouse cardiovascular system in an age-dependent manner. Loss of 3-MST exerts a cardioprotective role in young adult mice, while with aging it predisposes them to hypertension and cardiac hypertrophy

    Cardioprotective actions of H2S: pharmacological approaches and mechanisms of action in vitro and in vivo

    No full text
    Hydrogen sulfide (H2S) is a signaling molecule with protective effects in the cardiovascular system. To harness the therapeutic potential of H2S, a number of donors have been developed. The aim of the present study was to compare the cardioprotective actions of representative H2S donors from different classes and to study their mechanisms of action in myocardial injury in vitro and in vivo. Exposure of cardiomyocytes to H2O2 lead to significant cytotoxicity which was inhibited by sodium sulfide (Na2S), thiovaline (TV), GYY4137 and AP39. Inhibition of nitric oxide (NO) synthesis prevented the cytoprotective effects of Na2S and TV, but not GYY4137 and AP39, against H2O2-induced cardiomyocyte injury. Mice subjected to left anterior descending coronary ligation were protected from ischemia-reperfusion injury by the H2S donors tested. Inhibition of NOS in vivo blocked only the beneficial effect of Na2S. Moreover, Na2S, but not AP39, administration enhanced endothelial NOS and vasodilator stimulated phosphoprotein phosphorylation. Both Na2S and AP39 reduced infarct size in mice lacking cyclophilin-D (CypD), a modulator of the mitochondrial permeability transition pore (PTP). Nevertheless, only AP39 displayed a direct effect on mitochondria by increasing mitochondrial Ca2+ retention capacity, an evidence of decreased propensity to undergo permeability transition. We conclude that although all H2S donors tested limit infarct size, the pathways involved were not conserved. Na2S had no direct effects on PTP opening and its action was NO-dependent. In contrast, the cardioprotection exhibited by AP39, could result from a direct inhibitory effect on PTP, acting at a site different than CypD.Το υδρόθειο (H2S) είναι ένα μόριο σηματοδότησης με προστατευτικές επιδράσεις στο καρδιαγγειακό σύστημα. Προκειμένου να αξιοποιηθούν οι θεραπευτικές δυνατότητες του H2S, έχουν αναπτυχθεί μια σειρά από δότες H2S. Ο σκοπός της παρούσας μελέτης ήταν να συγκρίνει τις καρδιοπροστατευτικές δράσεις αντιπροσωπευτικών φαρμάκων που ανήκουν σε διαφορετικές κατηγορίες δοτών H2S και να μελετήσει τους μηχανισμούς δράσης τους σε καρδιομυοκύτταρα in vitro και in vivo. Η έκθεση καρδιομυοκυττάρων σε Η2Ο2 οδήγησε σε σημαντική κυτταροτοξικότητα που ανεστάλη από θειούχο νάτριο (Na2S), θειοβαλίνη (TV), GYY4137 και ΑΡ39. Η αναστολή της συνθάσης του μονοξειδίου του αζώτου (eNOS) απέτρεψε τις κυτταροπροστατευτικές επιδράσεις των Na2S και θειοβαλίνη, αλλά δεν επηρέασε τη δράση των GYY4137 και ΑΡ39, έναντι της τοξικότητας που προκλήθηκε από το Η2Ο2. Στη συνέχεια ελέγξαμε τους δότες H2S σε μοντέλο ισχαιμίας-επαναιμάτωσης σε ποντίκια που υποβλήθηκαν σε μυοκαρδιακή ισχαιμία λόγω απολίνωσης του αριστερού πρόσθιου κατιόντος κλάδου της στεφανιαίας αρτηρίας. Όλοι οι δότες ήταν αποτελεσματικοί στην μείωση της εμφραγματικής περιοχής στο μοντέλο αυτό. Η αναστολή της eNOS in vivo είχε ως αποτέλεσμα να ανασταλεί το ευεργετικό αποτέλεσμα της Na2S, αλλά όχι και των άλλων δοτών (θειοβαλίνη (TV), GYY4137 και ΑΡ39). Σε συμφωνία με τα αποτελέσματα από τα λειτουργιακά πειράματα, το Na2S, αλλά όχι το AP39, αύξησε τη φωσφορυλίωση της eNOS και της πρωτεΐνης VASP (phosphoprotein associated protein). Τόσο το Na2S όσο και και το ΑΡ39 μείωσαν το μέγεθος του εμφράγματος σε ποντικούς στους οποίους έχει απαλειφθεί το γονίδιο της κυκλοφιλίνης-D (CypD), μιας πρωτεΐνης που ρυθμίζει την διαπερατότητα του μιτοχονδριακού πόρου (ΡΤΡ). Παρ' όλα αυτά, μόνο το AP39 εμφάνισε άμεση επίδραση στα μιτοχόνδρια, αυξάνοντας την ικανότητα των μιτοχονδρίων να κατακρατούν Ca2+. Συμπερασματικά, αν και όλοι οι δότες H2S έχουν την ικανότητα να μειώνουν την έκταση του εμφράγματος σε ζωικά πρότυπα μετά από ισχαιμία/επαναιμάτωση, δεν χρησιμοποιούν όλοι τις ίδιες οδούς σηματοδότησης. Το Na2S δεν ασκεί άμεση δράση στα μιτοχόνδρια και η δράση του ήταν εξαρτώμενη από το ΝΟ. Σε αντίθεση, η καρδιοπροστασία που παρουσιάζει το ΑΡ39, μπορεί να προκύπτει από μια άμεση ανασταλτική επίδραση στο μιτοχονδριακό πόρο, δρώντας σε κάποιο από τα συστικά του πόρου, όχι όμως στην CypD

    TRPV4 Inhibition Exerts Protective Effects Against Resistive Breathing Induced Lung Injury

    No full text
    Introduction: TRPV4 channels are calcium channels, activated by mechanical stress, that have been implicated in the pathogenesis of pulmonary inflammation. During resistive breathing (RB), increased mechanical stress is imposed on the lung, inducing lung injury. The role of TRPV4 channels in RB-induced lung injury is unknown. Materials and Methods: Spontaneously breathing adult male C57BL/6 mice were subjected to RB by tracheal banding. Following anaesthesia, mice were placed under a surgical microscope, the surface area of the trachea was measured and a nylon band was sutured around the trachea to reduce area to half. The specific TRPV4 inhibitor, HC-067047 (10 mg/kg ip), was administered either prior to RB and at 12 hrs following initiation of RB (preventive) or only at 12 hrs after the initiation of RB (therapeutic protocol). Lung injury was assessed at 24 hrs of RB, by measuring lung mechanics, total protein, BAL total and differential cell count, KC and IL-6 levels in BAL fluid, surfactant Protein (Sp)D in plasma and a lung injury score by histology. Results: RB decreased static compliance (Cst), increased total protein in BAL (p < 0.001), total cell count due to increased number of both macrophages and neutrophils, increased KC and IL-6 in BAL (p < 0.001 and p = 0.01, respectively) and plasma SpD (p < 0.0001). Increased lung injury score was detected. Both preventive and therapeutic HC-067047 administration restored Cst and inhibited the increase in total protein, KC and IL-6 levels in BAL fluid, compared to RB. Preventive TRPV4 inhibition ameliorated the increase in BAL cellularity, while therapeutic TRPV4 inhibition exerted a partial effect. TRPV4 inhibition blunted the increase in plasma SpD (p < 0.001) after RB and the increase in lung injury score was also inhibited. Conclusion: TRPV4 inhibition exerts protective effects against RB-induced lung injury
    corecore