7 research outputs found

    Synthesis and Characterization of Novel Biginelli Dihydropyrimidinone Derivatives Containing Imidazole Moiety

    No full text
    Enaminone, (2E)-1-[4-(1H-imidazol-1-yl) phenyl]-4-methylpent-2-en-1-one (II) was synthesized by refluxing 1-[4-(1H-imidazol-1-yl) phenyl] ethan-1-one (I) with dimethylforamide dimethylacetal (DMF–DMA) under solvent-free condition for 12 hours. Finally, the dihydropyrimidinone derivatives containing imidazole moiety (1–15) were obtained by reacting enaminone, (2E)-1-[4-(1H-imidazol-1-yl) phenyl]-4-methylpent-2-en-1-one (II) with urea and different substituted benzaldehydes in the presence of glacial acetic acid. Dihydropyrimidinone derivatives containing imidazole moiety were synthesized in excellent yield by means of a simple and efficient method. All the compounds were confirmed by elemental analysis. The structures of all the compounds were confirmed by modern spectroscopic methods

    Synthesis and Pharmacological Activities of Some New Triazolo- and Tetrazolopyrimidine Derivatives

    No full text
    A new series of fused triazolo- and tetrazolopyrimidine derivatives 2–14 were synthesized and their anti-inflammatory and ulcerogenic activities were evaluated. The pharmacological screening showed that many of these obtained compounds have good anti-inflammatory activities, comparable to the reference drug. The toxicity of the compounds was also assayed via the determination of their LD50 values. The structures of newly synthesized compounds were confirmed by IR, 1H-NMR, MS spectral data and elemental analysis

    New Inducible Nitric Oxide Synthase and Cyclooxygenase-2 Inhibitors, Nalidixic Acid Linked to Isatin Schiff Bases via Certain l-Amino Acid Bridges

    No full text
    A series of new Schiff bases were synthesized by condensation of isatins with the nalidixic acid-l-amino acid hydrazides. Prior to hydrazide formation, a peptide linkage has been prepared via coupling of nalidixic acid with appropriate l-amino acid methyl esters to yield 3a–c. The chemical structures of the new Schiff bases (5b and 5d–h) were confirmed by means of IR, NMR, mass spectroscopic, and elemental analyses. The anti-inflammatory activity of these Schiff bases was evaluated via measurement of the expressed inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in the lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells model. The Schiff bases exhibited significant dual inhibitory effect against the induction of the pro-inflammatory iNOS and COX-2 proteins with variable potencies. However, they strongly down-regulated the iNOS expression to the level of 16.5% ± 7.4%–42.2% ± 19.6% compared to the effect on COX-2 expression (<56.4% ± 3.1% inhibition) at the same concentration (10 μM). The higher iNOS inhibition activity of the tested Schiff bases, relative to that of COX-2, seems to be a reflection of the combined suppressive effects exerted by their nalidixic acid, isatins (4a–c), and l-amino acid moieties against iNOS expression. These synthesized nalidixic acid-l-amino acid-isatin conjugates can be regarded as a novel class of anti-inflammatory antibacterial agents

    Synthesis, Characterization, and Anti-diabetic Activity of Some Novel Vanadium-Folate-Amino Acid Materials

    No full text
    A new six intraperitoneal injections insulin-mimetic vanadyl(IV) compounds [(VO)(FA)(AAn)] (where n = 1–6: AA1 = isoleucine, AA2 = threonine, AA3 = proline, AA4 = phenylalanine, AA5 = lysine, and AA6 = glutamine) were synthesized by the chemical reactions between folic acid (FA), VOSO4, and amino acids (AAn) with equal molar ratio 1:1:1 in neutralized media. These complexes were characterized by elemental analysis and estimation of vanadyl(IV) metal ions. The thermal stability behavior of these complexes was studied by TG-DTG-DTA analyses. The structures of these complexes were elucidated by spectroscopic methods like infrared, electron spin resonance (ESR), and solid reflectance spectroscopes. The powder X-ray diffraction (XRD) study suggested the crystalline nature of the complexes. Magnetic moments and electronic spectra revealed the square-pyramid geometrical structure of the complexes. The conductivity results refereed that all synthesized vanadyl(IV) complexes were of a non-electrolyte behavior. The infrared spectra assignments of these complexes revealed that the FAH2 and AAn chelates act as a bidentate ligation. The chelation towards vanadyl (IV) ions existed via deprotonation of one of the carboxylic groups of FAH2 drug ligand, and so amino acids act as bidentate ligands via N-amino and O-carboxylate groups. Both scanning and transmission electron microscope (SEM and TEM) techniques were used to investigate the surface morphology. The main task of this research is the aim of designing a new insulin alternative antidiabetic drug agent. The antidiabetic efficiency of these complexes was evaluated in streptozotocin-induced diabetic male albino rats. Liver and kidney functions, insulin and blood glucose levels, lipid profile, and superoxide dismutase antioxidant (SOD) are verified identifiers for the efficiency of VO(IV)/FA/AAn system compounds as antidiabetic drug agents
    corecore