41 research outputs found

    A manufacturable smart dressing with oxygen delivery and sensing capability for chronic wound management

    Get PDF
    Chronic non-healing wounds, impact over 6.5 million Americans, costs in excess of $25 billion to treat on an annual basis and its incidence is predicted to rise due to the prevalence of obesity and type-2 diabetes. One of the primary complications often associated with chronic wounds is the improper functionality of the peripheral vasculature to deliver O2-rich blood to the tissue which leads to wound hypoxia. Although hyperbaric oxygen therapy are widely used and accepted as an effective approach to bolster tissue O2 levels in hypoxic chronic wounds, most of such treatments require bulky equipment and often expose large areas of the body to unnecessarily elevated oxygen concentrations that can damage healthy tissue. In this paper, we present a smart low-cost wound dressing with integrated oxygen sensor and delivery for locally generating and delivering oxygen to selected hypoxic regions on the wound. The dressing is fabricated on a biocompatible water resistant/hydrophobic paper-based substrate with printed optical oxygen sensors and patterned catalytic oxygen generating regions that are connected to a flexible microfluidic systems. Oxygen generation occurs by flowing H2O2 through the channels and chemical decomposition at the catalyst printed regions on the paper substrate. The hydrophobic paper provides structural stability and flexibility while simultaneously offering printability, selective gaseous filtering, and physical/chemical protection. The fabrication process take advantage of scalable manufacturing technologies including laser processing, inkjet printing, and lamination

    A global analysis of diffractive events at HERA

    Full text link
    We extract diffractive parton distribution functions (DPDFs) and diffractive structure functions from the most recent H1 and ZEUS diffractive DIS data obtained by various methods. We consider Pomeron as an object with parton distribution function, evolving according to the next-to-leading order (NLO) DGLAP equations within the framework of the `Fixed Flavour Number Scheme' (FFNS). Having performed a global fit analysis, we achieve a very good description of all available measurements by introducing a new set of quark distribution form for the Pomeron. We predict longitudinal and charm proton diffractive structure function as well. Our results are compared with other analysis from the literature.Comment: 28 Pages, 15 Figures, 3 Table

    Energy scavenging from insect flight

    Full text link
    This paper reports the design, fabrication and testing of an energy scavenger that generates power from the wing motion of a Green June Beetle (C otinis nitida ) during its tethered flight. The generator utilizes non-resonant piezoelectric bimorphs operated in the d 31 bending mode to convert mechanical vibrations of a beetle into electrical output. The available deflection, force, and power output from oscillatory movements at different locations on a beetle are measured with a meso-scale piezoelectric beam. This way, the optimum location to scavenge energy is determined, and up to ~115 µW total power is generated from body movements. Two initial generator prototypes were fabricated, mounted on a beetle, and harvested 11.5 and 7.5 µW in device volumes of 11.0 and 5.6 mm 3 , respectively, from 85 to 100 Hz wing strokes during the beetle's tethered flight. A spiral generator was designed to maximize the power output by employing a compliant structure in a limited area. The necessary technology needed to fabricate this prototype was developed, including a process to machine high-aspect ratio devices from bulk piezoelectric substrates with minimum damage to the material using a femto-second laser. The fabricated lightweight spiral generators produced 18.5–22.5 µW on a bench-top test setup mimicking beetles' wing strokes. Placing two generators (one on each wing) can result in more than 45 µW of power per insect. A direct connection between the generator and the flight muscles of the insect is expected to increase the final power output by one order of magnitude.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90804/1/0960-1317_21_9_095016.pd

    Titanium Carbide MXene as NH3 Sensor: Realistic First-Principles Study

    No full text
    This work presents a more realistic study on the potential of titanium carbide MXene (Ti3C2Tx) for gas sensing, by employing first principle calculations. The effects of different ratios of different functional groups on the adsorption of NH3, NO, NO2, N2O, CO, CO2, CH4, and H2S gas molecules on Ti3C2Tx were analyzed. The results indicated that Ti3C2Tx is considerably more sensitive to NH3, among the studied gas molecules, with a charge transfer of -0.098 e and an adsorption energy of -0.36 eV. By analyzing the electrostatic surface potential (ESP) and the projected density of states (PDOS), important physical and mechanical properties that determine the strength and nature of gas-substrate interactions were investigated, and also, the significant role of electrostatic effects on the charge transfer mechanism was revealed. Further, the Bader charge analysis for the closest oxygen and fluorine atoms to NH3 molecule showed that oxygen atoms have 60% to 180% larger charge transfer than fluorine atoms, supporting that Ti3C2Tx substrate with a relatively lower ratio of fluorine surface terminations has a stronger interaction with NH3 gas molecules. The calculations show that in the presence of water molecules, approximately 90% smaller charge transfer between NH3 molecule and the Ti3C2Tx occurs. Ab initio molecular dynamics simulations (AIMD) were also carried out to evaluate the thermal stabilities of Mxenes. The comprehensive study presented in this work provides insights and paves the way for realizing sensitive NH3 sensors based on Ti3C2Tx that can be tuned by the ratio of surface termination groups

    Development of a Fluorinated Graphene-Based Resistive Humidity Sensor

    No full text
    This work presents the development of novel fluorinated graphene (FG)-based resistive humidity sensor. The humidity sensor was fabricated by drop-casting FG suspension, as the humidity sensing material, on silver (Ag)-based interdigitated electrodes (IDEs). The silver-based IDEs were screen printed on a flexible polyimide substrate. The FG suspension was synthesized by uniform dispersion of FG in isopropyl alcohol (IPA), using the ultra-sonication process. The resistive response of the fabricated humidity sensors towards varying relative humidity (RH) levels was investigated, when the RH was varied from 20% to 80%, in steps of 10%, and at a temperature of 24 \ub0C. A relative resistance change of 13.3% was observed when the RH was changed from 20% to 80%, with a sensitivity of 0.22%/%RH for the FG-based humidity sensor. Response time and recovery time of 82 s and 125 s, respectively, was obtained for the fabricated sensor. In addition, the effect of varying operating temperatures on the response of the fabricated humidity sensors was investigated. The average temperature coefficient of resistance of sensors was obtained as approximately -0.3%/\ub0C. A linear relation between the temperature and the relative resistance change of sensors was observed. Further, first-principles study, employing density functional theory calculations, was performed to investigate interactions between the fluorine atom and graphene substrate, as well as humidity sensing behavior of the FG. DFT calculations showed that hydrogen atoms of the water molecule move towards the fluorine atom of the FG during the relaxation process, confirming the hydrogen bonding between FG and water molecules. The Eads of -0.50 eV was calculated for the adsorption of water molecule on the FG, demonstrating the strong humidity sensing property of the FG. The results demonstrate that FG, a highly stable derivative of graphene, is a potential material for humidity sensing applications

    Impact of Different Ratios of Fluorine, Oxygen, and Hydroxyl Surface Terminations on Ti3C2T x MXene as Ammonia Sensor: A First-Principles Study

    No full text
    A first-principles study was successfully employed to investigate the impact of different ratios of functional groups such as fluorine (-F), oxygen (-O), and hydroxyl (-OH) on ammonia (NH3) sensing of titanium carbide Mxene. Density functional theory (DFT) calculations were performed for studying the adsorption energy (Eads) and charge transfer (CT) between different gases (NH3, CO 2 , NO, H2S and SO 2 ) and TbC2T x material with a high ratio of fluorine surface functional groups, TbC2(OH)o.44Fo.ssO0.66. DFT calculations showed more sensitivity to NH3, with the highest CT (0.098 e) and the lowest Eads (-0.36 eV) among the mentioned gases. The adsorption of NH3 on TbC2T x MXene with a high and low ratios of fluorine surface functional groups, TbC2(OH)o.44Fo.ssOO.66 (Substrate 1) and TbC2(OH)o.66Fo.2201.11 (Substrate 2) respectively, resulted in adsorption energies of -0.36 eV and -0.49 eV, revealing a stronger adsorption of NH3 on Substrate 2 with low ratios of fluorine. In addition, the isosurfaces representation of charge difference illustrated that fluorine atoms have smaller charge transfer than oxygen atoms when interacting with NH3 molecules. The Bader charge difference for the closest oxygen and fluorine atoms to NH3 molecule showed that oxygen atoms have 60% to 180% larger Bader charge difference, when compared to fluorine atoms, supporting that TbC2T x sensor with a lower ratio of fluorine surface termination has a stronger interaction with NH3 gas molecules

    Humidity Sensing Properties of Halogenated Graphene: A Comparison of Fluorinated Graphene and Chlorinated Graphene

    No full text
    This work presents a comparison of humidity sensing properties of fluorinated graphene (FG) and chlorinated graphene (ClG), using experimental data and atomic-level ab-initio simulations. The fabrication of the humidity sensor included drop-casting FG and ClG suspensions on silver (Ag)based interdigitated electrodes (IDEs) to form the sensing layer. The sensitivity of FG and ClG to humidity variations was investigated by measurement of relative resistance change (\u394 R/Rb) of the fabricated humidity sensors when the relative humidity (RH) was changed from 20% to 80%, in steps of 10%, at a constant temperature of 24\ub0 C. For RH transition from 20% to 80%, the \u394 R/Rb of the FG-based and the ClG-based humidity sensors were measured as 13.3% and 10.8%, respectively, resulting in a sensitivity of 0.22%/%RH and 0.18%/%RH, respectively. Density functional theory (DFT) calculations showed adsorption energy (Eads) of-0.50 eV and-0.43 eV for the physisorption of water molecules on the FG and ClG, respectively, demonstrating the higher sensitivity of the FG to humidity. The density of states (DOS) calculations showed that the water-adsorbed FG has a larger DOS near the Fermi level when compared to water-adsorbed ClG, which can be attributed to the stronger interaction and more effective charge transfer between the FG and the water molecule

    Effects of Nb doping on the TiO2 anatase-to-rutile phase transition

    Get PDF
    We study the influence of Nb doping on the TiO2 anatase-to-rutile phase transition, using combined transmission electron microscopy, Raman spectroscopy, x-ray diffraction and selected area electron diffraction analysis. This approach enabled anatase-to-rutile phase transition hindering to be clearly observed for low Nb-doped TiO2 samples. Moreover, there was clear grain growth inhibition in the samples containing Nb. The use of high resolution transmission electron microscopy with our samples provides an innovative perspective compared with previous research on this issue. Our analysis shows that niobium is segregated from the anatase structure before and during the phase transformation, leading to the formation of NbO nanoclusters on the surface of the TiO2 rutile nanoparticles
    corecore