402 research outputs found

    Complementarity of a Low Energy Photon Collider and LHC Physics

    Full text link
    We discuss the complementarity between the LHC and a low energy photon collider. We mostly consider the scenario, where the first linear collider is a photon collider based on dual beam technology like CLIC.Comment: 29 pages, 37 figure, LP-200

    Dilaton as a Dark Matter Candidate and its Detection

    Full text link
    Assuming that the dilaton is the dark matter of the universe, we propose an experiment to detect the relic dilaton using the electromagnetic resonant cavity, based on the dilaton-photon conversion in strong electromagnetic background. We calculate the density of the relic dilaton, and estimate the dilaton mass for which the dilaton becomes the dark matter of the universe. With this we calculate the dilaton detection power in the resonant cavity, and compare it with the axion detection power in similar resonant cavity experiment.Comment: 23 pages, 2 figure

    Physics and operation oriented activities in preparation of the JT-60SA tokamak exploitation

    Get PDF
    The JT-60SA tokamak, being built under the Broader Approach agreement jointly by Europe and Japan, is due to start operation in 2020 and is expected to give substantial contributions to both ITER and DEMO scenario optimisation. A broad set of preparation activities for an efficient start of the experiments on JT-60SA is being carried out, involving elaboration of the Research Plan, advanced modelling in various domains, feasibility and conception studies of diagnostics and other sub-systems in connection with the priorities of the scientific programme, development and validation of operation tools. The logic and coherence of this approach, as well as the most significant results of the main activities undertaken are presented and summarised.EURATOM 63305

    Axion-Higgs Unification

    Get PDF
    In theories with no fundamental scalars, one gauge group can become strong at a large scale Lambda and spontaneously break a global symmetry, producing the Higgs and the axion as composite pseudo-Nambu-Goldstone bosons. We show how KSVZ and DFSZ axion models can be naturally realised. The assumption Lambda around 10^{11} GeV is phenomenologically favoured because: a) The axion solves the QCD theta problem and provides the observed DM abundance; b) The observed Higgs mass is generated via RGE effects from a small Higgs quartic coupling at the compositeness scale, provided that the Higgs mass term is fine-tuned to be of electroweak size; c) Lepton, quark as well as neutrino masses can be obtained from four-fermion operators at the compositeness scale. d) The extra fermions can unify the gauge couplings.Comment: 19 pages. Refs. added and eq. 3.6 fixe

    Superdeformation in 198^{198}Po

    Full text link
    The 174^{174}Yb(29^{29}Si,5n) reaction at 148 MeV with thin targets was used to populate high-angular momentum states in 198^{198}Po. Resulting γ\gamma rays were observed with Gammasphere. A weakly-populated superdeformed band of 10 γ\gamma-ray transitions was found and has been assigned to 198^{198}Po. This is the first observation of a SD band in the A190A \approx 190 region in a nucleus with Z>83Z > 83. The J(2){\cal J}^{(2)} of the new band is very similar to those of the yrast SD bands in 194^{194}Hg and 196^{196}Pb. The intensity profile suggests that this band is populated through states close to where the SD band crosses the yrast line and the angular momentum at which the fission process dominates.Comment: 10 pages, revtex, 2 figs. available on request, submitted to Phys. Rev. C. (Rapid Communications
    corecore