18 research outputs found

    NNcon: improved protein contact map prediction using 2D-recursive neural networks

    Get PDF
    Protein contact map prediction is useful for protein folding rate prediction, model selection and 3D structure prediction. Here we describe NNcon, a fast and reliable contact map prediction server and software. NNcon was ranked among the most accurate residue contact predictors in the Eighth Critical Assessment of Techniques for Protein Structure Prediction (CASP8), 2008. Both NNcon server and software are available at http://casp.rnet.missouri.edu/nncon.html

    NNcon: improved protein contact map prediction using 2D-recursive neural networks

    Get PDF
    Protein contact map prediction is useful for protein folding rate prediction, model selection and 3D structure prediction. Here we describe NNcon, a fast and reliable contact map prediction server and software. NNcon was ranked among the most accurate residue contact predictors in the Eighth Critical Assessment of Techniques for Protein Structure Prediction (CASP8), 2008. Both NNcon server and software are available at http://casp.rnet.missouri.edu/nncon.html

    Mechano-regulated Tenascin-C orchestrates muscle repair

    No full text
    Tenascin-C (TNC) is a mechano-regulated, morphogenic, extracellular matrix protein that is associated with tissue remodeling. The physiological role of TNC remains unclear because transgenic mice engineered for a TNC deficiency, via a defect in TNC secretion, show no major pathologies. We hypothesized that TNC-deficient mice would demonstrate defects in the repair of damaged leg muscles, which would be of functional significance because this tissue is subjected to frequent cycles of mechanical damage and regeneration. TNC-deficient mice demonstrated a blunted expression of the large TNC isoform and a selective atrophy of fast-muscle fibers associated with a defective, fast myogenic expression response to a damaging mechanical challenge. Transcript profiling mapped a set of de-adhesion, angiogenesis, and wound healing regulators as TNC expression targets in striated muscle. Expression of these regulators correlated with the residual expression of a damage-related 200-kDa protein, which resembled the small TNC isoform. Somatic knockin of TNC in fast-muscle fibers confirmed the activation of a complex expression program of interstitial and slow myofiber repair by myofiber-derived TNC. The results presented here show that a TNC-orchestrated molecular pathway integrates muscle repair into the load-dependent control of the striated muscle phenotype
    corecore