13 research outputs found

    Association of different microbes and pathogenic factors in cases of infectious bovine keratoconjunctivitis in cattle from Eastern Kazakhstan

    Get PDF
    Background and Aim: Infectious bovine keratoconjunctivitis (IBK) causes a significant economic loss to cattle industries in many countries, including Kazakhstan. Although Moraxella bovis is recognized as an etiologic agent of IBK, other bacterial and viral agents have been suspected to play a role in the pathogenesis of this disease. This study aimed to evaluate samples collected from the eyes of IBK-affected cattle in Eastern Kazakhstan at different stages of IBK for the presence of Mor. bovis, Moraxella bovoculi, Mycoplasma bovis, Mycoplasma bovoculi, and Bovine Herpes Virus Type 1 (BHV-1) and to characterize Mor. bovoculi pilA gene sequence diversity from Mor. bovoculi positive samples. Materials and Methods: Individual ocular swabs (n = 168) were collected from cattle that had clinical signs of IBK during the summer of 2022 on farms in the Abay region of Kazakhstan. Eye lesion scores (1, 2, and 3) were assigned depending on the degree of ocular damage. Infectious bovine keratoconjunctivitis-associated organisms were detected using a multiplex real-time polymerase chain reaction assay. The Mor. bovoculi pilA gene was sequenced from Mor. bovoculi positive samples. Results: Mycoplasma bovis and BHV-1 were not detected in any of the collected samples. Mycoplasma bovoculi was identified in the majority of samples overall, usually in mixed infection with Moraxella spp. Moraxella bovoculi was detected in 76.2% of animals and predominated in animals with eye lesion scores 2 and 3. Mycoplasma bovoculi was detected only in association with Mor. bovis and/or Mor. bovoculi in animals with eye lesion scores 2 and 3. Moraxella bovis was found in 57.7% of animals and was always identified in association with another organism. Sequencing of the pilA gene in 96 samples from Mor. bovoculi positive samples identified five PilA groups. The majority belonged to PilA group A. However, three new PilA groups were identified and designated PilA groups N, O, and P. Conclusion: The results indicate a high prevalence of Myc. bovoculi and Mor. bovoculi in eyes of cattle with IBK on livestock farms in Eastern Kazakhstan. Additional novel Mor. bovoculi PilA groups were identified

    Draft Genome Sequence of Moraxella bovoculi Strain KZ-1, Isolated from Cattle in North Kazakhstan

    No full text
    Place: Washington Publisher: Amer Soc Microbiology WOS:000572063900018Moraxella bovoculi strain KZ-1 was isolated from cattle that had symptoms of infectious bovine keratoconjunctivitis (IBK) in northern Kazakhstan. Here, we report the draft genome sequence of this strain

    Retrospective Analysis of the Relationship between Two Anthrax Outbreaks in Kazakhstan Based on Genomic Data

    No full text
    Publisher: American Society for Microbiology Section: Genome SequencesWe present a retrospective analysis of strains from two anthrax outbreaks in western Kazakhstan in 2009. The outbreaks occurred during the same period and in the same area located close to main roads, favoring a single source of infection. However, multilocus variable-number tandem-repeat analysis (MLVA), canonical single-nucleotide polymorphism (CanSNP) analysis, and genome-wide analysis demonstrated that the outbreaks were not connected

    Draft Genome Sequences of Three Pasteurella multocida Strains Isolated from Domestic Animals in Kazakhstan

    No full text
    We report here the draft genome sequences of three strains of Pasteurella multocida isolated in Kazakhstan from domestic animals that died due to hemorrhagic septicemia

    DRAFT GENOME SEQUENCE OF A POTENTIAL COMMERCIAL BIOCELLULOSE PRODUCER, STRAIN KOMAGATAEIBACTER EUROPAEUS GH1

    No full text
    In this work, we present the draft genome sequence of Komagataeibacter europaeus strain GH1, which is an extremely efficient biocellulose producer

    Draft Genome Sequence of the Strain Francisella tularensis subsp. mediasiatica 240, Isolated in Kazakhstan

    No full text
    Francisella tularensis subsp. mediasiatica is the least studied among the four F. tularensis subspecies. We present here the genome data of F. tularensis subsp. mediasiatica 240, isolated in the southern region of Kazakhstan

    Bacillus anthracis Phylogeography: New Clues From Kazakhstan, Central Asia

    No full text
    International audienceThis article describes Bacillus anthracis strains isolated in Kazakhstan since the 1950s until year 2016 from sixty-one independent events associated with anthrax in humans and animals. One hundred and fifty-four strains were first genotyped by Multiple Locus VNTR (variable number of tandem repeats) Analysis (MLVA) using 31 VNTR loci. Thirty-five MLVA31 genotypes were resolved, 28 belong to the A1/TEA group, five to A3/Sterne-Ames group, one to A4/Vollum and one to the B clade. This is the first report of the presence of the B-clade in Kazakhstan. The MLVA31 results and epidemiological data were combined to select a subset of seventy-nine representative strains for draft whole genome sequencing (WGS). Strains from Kazakhstan significantly enrich the known phylogeny of the Ames group polytomy, including the description of a new branch closest to the Texas, United States A.Br.Ames sublineage stricto sensu. Three among the seven currently defined branches in the TEA polytomy are present in Kazakhstan, “Tsiankovskii”, “Heroin”, and “Sanitary Technical Institute (STI)”. In particular, strains from the STI lineage are largely predominant in Kazakhstan and introduce numerous deep branching STI sublineages, demonstrating a high geographic correspondence between “STI” and Kazakhstan, Central Asia. This observation is a strong indication that the TEA polytomy emerged after the last political unification of Asian steppes in the fourteenth century of the Common Era. The phylogenetic analysis of the Kazakhstan data and of currently available WGS data of worldwide origin strengthens our understanding of B. anthracis geographic expansions in the past seven centuries

    HIGHLY PATHOGENIC AVIAN INFLUENZA VIRUS OF THE A/H5N8 SUBTYPE, CLADE 2.3.4.4B, CAUSED OUTBREAKS IN KAZAKHSTAN IN 2020

    Get PDF
    Background. Large poultry die-offs happened in Kazakhstan during autumn of 2020. The birds’ disease appeared to be avian influenza. Northern Kazakhstan was hit first and then the disease propagated across the country affecting eleven provinces. This study reports the results of full-genome sequencing of viruses collected during the outbreaks and investigation of their relationship to avian influenza virus isolates in the contemporary circulation in Eurasia. Methods. Samples were collected from diseased birds during the 2020 outbreaks in Kazakhstan. Initial virus detection and subtyping was done using RT-PCR. Ten samples collected during expeditions to Northern and Southern Kazakhstan were used for full-genome sequencing of avian influenza viruses. Phylogenetic analysis was used to compare viruses from Kazakhstan to viral isolates from other world regions. Results. Phylogenetic trees for hemagglutinin and neuraminidase show that viruses from Kazakhstan belong to the A/H5N8 subtype and to the hemagglutinin H5 clade 2.3.4.4b. Deduced hemagglutinin amino acid sequences in all Kazakhstan’s viruses in this study contain the polybasic cleavage site (KRRKR-G) indicative of the highly pathogenic phenotype. Building phylogenetic trees with the Bayesian phylogenetics results in higher statistical support for clusters than using distance methods. The Kazakhstan’s viruses cluster with isolates from Southern Russia, the Russian Caucasus, the Ural region, and southwestern Siberia. Other closely related prototypes are from Eastern Europe. The Central Asia Migratory Flyway passes over Kazakhstan and birds have intermediate stops in Northern Kazakhstan. It is postulated that the A/H5N8 subtype was introduced with migrating birds. Conclusion. The findings confirm the introduction of the highly pathogenic avian influenza viruses of the A/Goose/Guangdong/96 (Gs/GD) H5 lineage in Kazakhstan. This virus poses a tangible threat to public health. Considering the results of this study, it looks justifiable to undertake measures in preparation, such as install sentinel surveillance for human cases of avian influenza in the largest pulmonary units, develop a human A/H5N8 vaccine and human diagnostics capable of HPAI discrimination

    ANALYSIS OF BACTEROIDES FRAGILIS CLINICAL STRAINS ISOLATED IN KAZAKHSTAN

    No full text
    Our aim was to study the nucleotide sequences of 9 previously undescribed strains of B. fragilis collected from patients with intra-abdominal diseases at city hospitals in Nur-Sultan, Kazakhstan
    corecore