23 research outputs found

    Mechanical properties of mica-filled polycarbonate/poly (acrylonitrile-butadiene-styrene) composites.

    Get PDF
    The present study investigated the effect of untreated and treated mica fillers on the mechanical properties of Polycarbonate (PC)/Poly(Acrylonitrile-Butadiene-Styrene) (ABS) composites. PC/ABS/mica composites were prepared by using twin screw extruder and test samples by injection molding. Results indicated that incorporation of mica in PC/ABS (70/30) causes decreases in tensile stress, elongation at break, and on impact properties. It was observed that surface treatment of mica by a coupling agent on PC/ABS 70/30 composite displays increases in tensile stress, elongation at break, and on flexural strength and impact properties. Treated mica is utilized as filler in PC/ABS blends to enhance its application in electronic and automotive sectors

    Physico-mechanical, thermal and morphologicalproperties of furfurylalcohol/2-ethylhexyl methacrylate/halloysite nanoclay woodpolymer nanocomposites (WPNCs)

    Get PDF
    In this study, the physical, morphological, mechanical and thermal properties of furfuryl alcohol/2-ethylhexyl methacrylate/halloysite nanoclay wood polymer nanocomposites (FA-co-EHMA-HNC WPNCs) were investigated. FA-coEHMA-HNC WPNCs were prepared via an impregnation method and the properties of the nanocomposites were characterized through the weight percent gain, Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), three-point flexural test, dynamic mechanical thermal analysis (DMTA), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) analysis and moisture absorption test. The weight percent gain in the 50:50 FA-co-EHMA-HNC WPNC was the highest compared with the raw wood (RW) and other WPNCs. The FT-IR results confirmed that polymerization took place in the nanocomposites, especially 50:50 FA-co-EHMA-HNC WPNC, which had a reduced amount of hydroxyl groups. The SEM results revealed that the 50:50 FAco-EHMA-HNC WPNC had the smoothest and most uniform surface among all of the nanocomposites. The 50:50 FA-co-EHMA-HNC WPNC showed the highest flexural strength and modulus of elasticity. The results revealed that the storage modulus and loss modulus of the FA-co-EHMA-HNC WPNCs were higher and the tan δ of FA-co-EHMA-HNC WNPCs was lower compared with the RW. The FAco-EHMA-HNC WPNCs exhibited the higher thermal stability in the TGA and DSC analysis. The 50:50 FA-co-EHMA-HNC WPNC exhibited remarkably lower moisture absorption compared with the RW. Overall, this study proved that the ratio 50:50 FA-co-EHMA ratio was the most suitable for introduction in the in the RW

    Extraction and characterization of natural cellulosic fiber from Pandanus Amaryllifolius leaves

    Get PDF
    Pandanus amaryllifolius is a member of Pandanaceae family and is abundant in south-east Asian countries including Malaysia, Thailand, Indonesia and India. In this study, Pandanus amaryllifolius fibres were extracted via a water retting extraction process and were investigated as potential fibre reinforcement in polymer composite. Several tests were carried out to investigate the characterization of Pandanus amaryllifolius fibre such as chemical composition analysis which revealed Pandanus amaryllifolius fibre’s cellulose, hemicellulose and lignin content of 48.79%, 19.95% and 18.64% respectively. Material functional groups were analysed by using Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction analysis confirming the presence of cellulose and amorphous substances in the fibre. The morphology of extracted Pandanus amaryllifolius fibre was studied using a scanning electron microscope (SEM). Further mechanical behaviour of fibre was investigated using a single fibre test with 5 kN cell load and tensile strength was found to be 45.61 ± 16.09 MPa for an average fibre diameter of 368.57 ± 50.47 µm. Meanwhile, moisture content analysis indicated a 6.00% moisture absorption rate of Pandanus amaryllifolius fibre. The thermogravimetric analysis justified the thermal stability of Pandanus amaryllifolius fibre up to 210◦C, which is within polymerization process temperature conditions. Overall, the finding shows that Pandanus amaryllifolius fibre may be used as alternative reinforcement particularly for a bio-based polymer matrix

    Processing and characterisation of banana leaf fibre reinforced thermoplastic cassava starch composites

    Get PDF
    Increasing environmental concerns have led to greater attention to the development of biodegradable materials. The aim of this paper is to investigate the effect of banana leaf fibre (BLF) on the thermal and mechanical properties of thermoplastic cassava starch (TPCS). The biocomposites were prepared by incorporating 10 to 50 wt.% BLF into the TPCS matrix. The samples were charac-terised for their thermal and mechanical properties. The results showed that there were significant increments in the tensile and flexural properties of the materials, with the highest strength and mod-ulus values obtained at 40 wt.% BLF content. Thermogravimetric analysis showed that the addition of BLF had increased the thermal stability of the material, indicated by higher-onset decomposition temperature and ash content. Morphological studies through scanning electron microscopy (SEM) exhibited a homogenous distribution of fibres and matrix with good adhesion, which is crucial in improving the mechanical properties of biocomposites. This was also attributed to the strong interaction of intermolecular hydrogen bonds between TPCS and fibre, proven by the FT-IR test that observed the presence of O–H bonding in the biocomposite

    Characterization of Potential Cellulose from Hylocereus Polyrhizus (Dragon Fruit) peel: A Study on Physicochemical and Thermal Properties

    Get PDF
    The strict environmental regulations to overcome the drawbacks of consumption and disposal of non-renewable synthetic materials have motivated this investigation. The physical, chemical, morphological, and thermal properties of Hylocereus Polyrhizus peel (HPP) powder obtained from the raw materials were examined in this study. The physical properties analyzes of Hylocereus Polyrhizus peel (HPP) powder discovered that the moisture content, density, and water holding capacity were 9.70%, 0.45 g/cm3 , and 98.60%, respectively. Meanwhile, the chemical composition analysis of Hylocereus Polyrhizus peel (HPP) powder revealed that the powder was significantly high in cellulose contents (34.35%) from other bio-peel wastes. The crystallinity index of Hylocereus Polyrhizus peel (HPP) powder was 32.76%, according to further X-ray diffraction (XRD) analysis. The thermal stability of Hylocereus Polyrhizus peel (HPP) powder was examined using thermogravimetric analysis (TGA) and found thermally stable at 204°C. The morphological study via scanning electron microscopy (SEM) showed a shriveled and irregular geometry surface. Hylocereus Polyrhizus peel (HPP) powder demonstrated the peak in the range representing the major functional groups responsible for pectin’s properties. Thus, the findings revealed that the Hylocereus Polyrhizus peel (HPP) powder has the potential for the development of biodegradable and renewable materials

    Impact of polyvinyl alcohol/acrylonitrile on bamboo nanocomposite and optimization of mechanical performance by response surface methodology

    Get PDF
    Bamboo is a natural resource that has prospect to substitute wood in many engineering applications. In this work, mechanical properties of bamboo nanocomposite based on polyvinyl alcohol (PVA)/acrylonitrile/nanoclay was evaluated using response surface methodology (RSM). The developed nanocomposites were characterized by X-ray diffraction (XRD), Fourier transform infra-red (FTIR), Scanning electron microscope (SEM), Differential scanning colometry (DSC), and Thermo gravimetry analysis (TGA) to study their compositional, morphological and thermal properties. Models were developed to predict modulus of elasticity and modulus of rupture of the nanocomposites. The developed models fitted the experimental values with R2 close to 1 and residuals normal probability plot fitted to straight line. Optimized values of MOE and MOR were 12.82 GPa and 105.52 MPa respectively at 10 wt% clay loading, 15 wt% PVA/acrylonitrile loading and modification time of 5 min. The melting and decomposition temperature of the nanocomposites have shown significant improvement compared to the raw bambo

    Influence of Alkali Treatment on the Mechanical, Thermal, Water Absorption, and Biodegradation Properties of Cymbopogan citratus Fiber-Reinforced, Thermoplastic Cassava Starch–Palm Wax Composites

    Get PDF
    In this study, thermoplastic cassava starch–palm wax blends, reinforced with the treated Cymbopogan citratus fiber (TPCS/ PW/ CCF) were successfully developed. The TPCS were priorly modified with palm wax to enhance the properties of the matrix. The aim of this study was to investigate the influence of alkali treatments on the TPCS/PW/CCF biocomposite. The fiber was treated with different sodium hydroxide (NaOH) concentrations (3%, 6%, and 9%) prior to the composite preparation via hot pressing. The obtained results revealed improved mechanical characteristics in the treated composites. The composites that underwent consecutive alkali treatments at 6% NaOH prior to the composite preparation had higher mechanical strengths, compared to the untreated fibers. A differential scanning calorimetry (DSC) and a thermogravimetric analysis (TGA) indicated that adding treated fibers into the TPCS matrix improved the thermal stability of the samples. The scanning electron microscopy (SEM) demonstrated an improved fiber–matrix adhesion due to the surface modification. An increment in the glass transition temperature (Tg) of the composites after undergoing NaOH treatment denoted an improved interfacial interaction in the treated samples. The Fourier transform infrared spectroscopy (FTIR) showed the elimination of hemicellulose at wavelength 1717 cm−1, for the composites treated with 6% NaOH. The water absorption, solubility, and thickness swelling revealed a higher water resistance of the composites following the alkali treatment of the fiber. These findings validated that the alkaline treatment of CCF is able to improve the functionality of the Cymbopogan citratus fiber-reinforced composites

    Biocomposite of cassava starch-cymbopogan citratus fibre: Mechanical, thermal and biodegradation properties

    Get PDF
    Increasing environmental awareness and concern have shifted the focus of research and development towards biodegradable materials development. In the current study, Cymbopogan citratus fibre (CCF) were incorporated into thermoplastic cassava starch (TPCS) with various content of CCF (10, 20, 30, 40, 50, 60 wt.%) via compression moulding. The determination of fundamental characteristics of TPCS/CCF biopolymer composites was conducted to assess their potential as biodegradable reinforcements. Characterization of the samples was conducted via Fourier-transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM), as well as mechanical, moisture absorption, and soil burial testings. The findings showed that the improved tensile and flexural features of the TPCS composites with CCF incorporation, with 50 wt.% CCF content yielded the maximum modulus and strength. The thermal properties of the biocomposite demonstrated that CCF addition improved the material’s thermal stability, as shown by a higher-onset decomposition temperature and ash content. Meanwhile, the CCF incorporation into TPCS slowed down the biodegradation of the composites. In term of morphological, homoge-neous fibres and matrix dispersion with excellent adhesion was observed in morphological analyses using scanning electron microscopy (SEM), which is crucial for the enhancement of the mechanical performance of biocomposites
    corecore