13 research outputs found

    Alternation rate in perceptual bistability is maximal at and symmetric around equi-dominance

    Full text link
    When an ambiguous stimulus is viewed for a prolonged time, perception alternates between the different possible interpretations of the stimulus. The alternations seem haphazard, but closer inspection of their dynamics reveals systematic properties in many bistable phenomena. Parametric manipulations result in gradual changes in the fraction of time a given interpretation dominates perception, often over the entire possible range of zero to one. The mean dominance durations of the competing interpretations can also vary over wide ranges (from less than a second to dozens of seconds or more), but finding systematic relations in how they vary has proven difficult. Following the pioneering work of W. J. M. Levelt (1968) in binocular rivalry, previous studies have sought to formulate a relation in terms of the effect of physical parameters of the stimulus, such as image contrast in binocular rivalry. However, the link between external parameters and “stimulus strength” is not as obvious for other bistable phenomena. Here we show that systematic relations readily emerge when the mean dominance durations are examined instead as a function of “percept strength,” as measured by the fraction of dominance time, and provide theoretical rationale for this observation. For three different bistable phenomena, plotting the mean dominance durations of the two percepts against the fraction of dominance time resulted in complementary curves with near-perfect symmetry around equi-dominance (the point where each percept dominates half the time). As a consequence, the alternation rate reaches a maximum at equi-dominance. We next show that the observed behavior arises naturally in simple double-well energy models and in neural competition models with cross-inhibition and input normalization. Finally, we discuss the possibility that bistable perceptual switches reflect a perceptual “exploratory” strategy, akin to foraging behavior, which leads naturally to maximal alternation rate at equi-dominance if perceptual switches come with a cost

    Dynamical characteristics common to neuronal competition models.

    Get PDF
    Shpiro A, Curtu R, Rinzel J, Rubin N. Dynamical characteristics common to neuronal competition models. J Neurophysiol 97: [462][463][464][465][466][467][468][469][470][471][472][473] 2007. First published October 25, 2006; doi:10.1152/jn.00604.2006. Models implementing neuronal competition by reciprocally inhibitory populations are widely used to characterize bistable phenomena such as binocular rivalry. We find common dynamical behavior in several models of this general type, which differ in their architecture in the form of their gain functions, and in how they implement the slow process that underlies alternating dominance. We focus on examining the effect of the input strength on the rate (and existence) of oscillations. In spite of their differences, all considered models possess similar qualitative features, some of which we report here for the first time. Experimentally, dominance durations have been reported to decrease monotonically with increasing stimulus strength (such as Levelt's "Proposition IV"). The models predict this behavior; however, they also predict that at a lower range of input strength dominance durations increase with increasing stimulus strength. The nonmonotonic dependency of duration on stimulus strength is common to both deterministic and stochastic models. We conclude that additional experimental tests of Levelt's Proposition IV are needed to reconcile models and perception. I N T R O D U C T I O N Binocular rivalry occurs when two different images are presented to the two eyes. With such ambiguous stimuli, only one of the images is perceived at any given moment, with dominance switching between the two images in a haphazard manner. The average dominance durations are typically a few seconds. Several stimulus parameters have been shown to influence the dynamical characteristics of the perceptual alternations. In particular, increasing the contrast of the rivaling images has been shown to increase the frequency of percept switching, which implies a decrease in the mean dominance times, an observation known as "Levelt's Proposition IV" Reciprocal inhibition architecture is widely used to describe binocular rivalry and bistable perception in general. The dominant side of the system exerts a strong inhibitory influence on the competing side, so that the latter is suppressed. The switching in dominance between the two sides is realized by a slow negative feedback process, such as spike-frequency adaptation or synaptic depression, that weakens the inhibition either by decreasing the activity of the dominant side or by decreasing the connectivity between the sides and allows the suppressed population to become active. These general principles have been incorporated in numerous mathematical models of binocular rivalry In addition to studying these two models as formulated, we also consider two variations of the model of We identify the parameter regimes where each model shows behavior that is consistent with Levelt's Proposition IV. In addition, we demonstrate that all the models predict previously unreported types of behavior. Using stimulation strength as the control variable, we focus on its effect on the existence and rate of oscillations. In spite of the differences in architecture and mathematical formulation of the explored models, we find substantial generalities in their behavior. In all models, for very high stimulus strengths the two populations are simultaneously active at a high level. Just below this regime is a range for stimulus strength where the behavior of the system is oscillatory, with the dominance period of each percept decreasing as stimulus strength increases, in accordance with Levelt's Proposition IV (decreasing duration, or DD behavior). However, for input strengths below this range new regimes of behavior are discovered: first, a winner-take-all (nonrivaling steady dominance) behavior appears. Next, as stimulus strength is further reduced, another range of rivalry (oscillatory) behavior appears, but this time with the dominance periods increasing with increasing input (increasing duration, or ID behavior). Finally, at very low input strengths there is again a range where the two populations are simultaneously active, this time at a low leve

    A self-consistent treatment of non-equilibrium spin torques in magnetic multilayers

    Full text link
    It is known that the transfer of spin angular momenta between current carriers and local moments occurs near the interface of magnetic layers when their moments are non-collinear. However, to determine the magnitude of the transfer, one should calculate the spin transport properties far beyond the interface regions. Based on the spin diffusion equation, we present a self-consistent approach to evaluate the spin torque for a number of layered structures. One of the salient features is that the longitudinal and transverse components of spin accumulations are inter-twined from one layer to the next, and thus, the spin torque could be significantly amplified with respect to treatments which concentrate solely on the transport at the interface due to the presence of the much longer longitudinal spin diffusion length. We conclude that bare spin currents do not properly estimate the spin angular momentum transferred between to the magnetic background; the spin transfer that occurs at interfaces should be self-consistently determined by embedding it in our globally diffuse transport calculations.Comment: 21 pages, 6 figure

    Mechanisms for Frequency Control in Neuronal Competition Models

    No full text
    corecore