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Models implementing neuronal competition by reciprocally inhibitory
populations are widely used to characterize bistable phenomena such
as binocular rivalry. We find common dynamical behavior in several
models of this general type, which differ in their architecture in the
form of their gain functions, and in how they implement the slow
process that underlies alternating dominance. We focus on examining
the effect of the input strength on the rate (and existence) of oscilla-
tions. In spite of their differences, all considered models possess
similar qualitative features, some of which we report here for the first
time. Experimentally, dominance durations have been reported to
decrease monotonically with increasing stimulus strength (such as
Levelt’s “Proposition IV”). The models predict this behavior; how-
ever, they also predict that at a lower range of input strength domi-
nance durations increase with increasing stimulus strength. The non-
monotonic dependency of duration on stimulus strength is common to
both deterministic and stochastic models. We conclude that additional
experimental tests of Levelt’s Proposition IV are needed to reconcile
models and perception.

I N T R O D U C T I O N

Binocular rivalry occurs when two different images are
presented to the two eyes. With such ambiguous stimuli, only
one of the images is perceived at any given moment, with
dominance switching between the two images in a haphazard
manner. The average dominance durations are typically a few
seconds. Several stimulus parameters have been shown to
influence the dynamical characteristics of the perceptual alter-
nations. In particular, increasing the contrast of the rivaling
images has been shown to increase the frequency of percept
switching, which implies a decrease in the mean dominance
times, an observation known as “Levelt’s Proposition IV”
(Levelt 1968).

Reciprocal inhibition architecture is widely used to describe
binocular rivalry and bistable perception in general. The dom-
inant side of the system exerts a strong inhibitory influence on
the competing side, so that the latter is suppressed. The
switching in dominance between the two sides is realized by a
slow negative feedback process, such as spike-frequency ad-
aptation or synaptic depression, that weakens the inhibition
either by decreasing the activity of the dominant side or by
decreasing the connectivity between the sides and allows the
suppressed population to become active. These general princi-
ples have been incorporated in numerous mathematical models
of binocular rivalry (Blake 1989; Grossberg 1987; Kalarikal

and Marshall 2000; Lago-Fernandez and Deco 2002; Laing and
Chow 2002; Lehky 1987; Matsuoka 1984; Stollenwerk and
Bode 2003; Wilson 2003). We analyzed the effect of varying
stimulation strength over a wide range in two models from this
family, those by Wilson (2003) and Laing and Chow (2002).
These population firing rate models involve two neuronal
populations corresponding to the neural representations of the
competing percepts. In the model introduced by Laing and
Chow (2002) cross-inhibition is realized directly between the
two populations. In the model presented by Wilson (2003),
separate inhibitory subpopulations are introduced, so that the
cross-inhibition acts through a relay stage.

In addition to studying these two models as formulated, we
also consider two variations of the model of Laing and Chow
(2002). Across these four different models, we implement
two types of slow negative feedback processes: one is
synaptic depression, which acts by decreasing the effective
synaptic connectivity, directly reducing the amount of neg-
ative feedback (if in the inhibitory connection), or the
amount of positive feedback (if in the excitatory connection)
in the system. The second type of process is spike-frequency
adaptation, which acts by reducing the excitability of the
active neurons in the network, opposing the positive feed-
back and external input.

We identify the parameter regimes where each model shows
behavior that is consistent with Levelt’s Proposition IV. In
addition, we demonstrate that all the models predict previously
unreported types of behavior. Using stimulation strength as the
control variable, we focus on its effect on the existence and rate
of oscillations. In spite of the differences in architecture and
mathematical formulation of the explored models, we find
substantial generalities in their behavior. In all models, for very
high stimulus strengths the two populations are simultaneously
active at a high level. Just below this regime is a range for
stimulus strength where the behavior of the system is oscilla-
tory, with the dominance period of each percept decreasing as
stimulus strength increases, in accordance with Levelt’s Prop-
osition IV (decreasing duration, or DD behavior). However, for
input strengths below this range new regimes of behavior are
discovered: first, a winner-take-all (nonrivaling steady domi-
nance) behavior appears. Next, as stimulus strength is further
reduced, another range of rivalry (oscillatory) behavior ap-
pears, but this time with the dominance periods increasing with
increasing input (increasing duration, or ID behavior). Finally,
at very low input strengths there is again a range where the two
populations are simultaneously active, this time at a low level
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that approaches zero with stimulus strength, in agreement with
experimental reports of “fusion” (Liu et al. 1992).

Thus rather than showing a monotonic decrease of oscilla-
tion period in the entire range of increasing stimulus strength
(as Levelt’s Proposition IV implies), we find that the period
versus stimulus strength dependency is nonmonotonic, passing
through an ID regime before it reaches the DD regime (in
addition to passing through three other, nonoscillatory re-
gimes). Although the strength of the mutual inhibition can
affect the shape of the curve of period versus stimulus strength
in quantitative details, the qualitative prediction of this curve
being nonmonotonic is very robust. Moreover, the increasing
duration behavior exists not only for deterministic models, but
also in the presence of noise.

M E T H O D S

We consider four distinct models of neuronal competition: one (W)
by Wilson (2003), the second (LC) by Laing and Chow (2002), and
the others (adaptation-LC and depression-LC) are our variations of the
LC model. All models are idealized population firing rate models. The
network architectures are shown schematically in Fig. 1, A and B,
respectively. Populations of neurons, corresponding to the left and
right boxes in each panel, are characterized by the spatially and
short-time–averaged firing rates. The neuronal populations respond to
the two competing stimuli presented to the two eyes. The rivalry
between dissimilar stimuli representations is realized by reciprocal
inhibition (lines with filled circles in Fig. 1), whereas slow processes,
such as synaptic depression or self-adaptation provide for the net-
work’s oscillatory behavior.

We note the following differences between the models. First,
separate inhibitory populations (bottom level boxes in Fig. 1A), are
introduced in the W model, so that cross-inhibition between compet-
ing populations is indirect contrary to the direct cross-inhibition in the
LC, adaptation-LC, and depression-LC models. Second, recurrent
excitation (dashed lines with arrows in Fig. 1B) is included in the LC
model, but not in the W, adaptation-LC, and depression-LC models.
Third, the input–output (gain) functions for the firing rate have
different forms in these models. Finally, the slow processes are
implemented differently in the models. Both spike-frequency adapta-
tion and synaptic depression are included in the LC model. Wilson’s
model and adaptation-LC models contain adaptation only. A depres-
sion-LC model contains only synaptic depression. In addition, the
dynamics of the slow process variables varies from model to model.
In the text below, we further describe the similarities and the differ-
ences between the models.

We study the behavior of the network within these models as a
function of the stimulus strength, common to both populations, and as
a function of the cross-inhibition strength.

Wilson’s model (Wilson 2003) is described by the following
system of equations

�Ė1 � � E1 �
100�V1 � gI2��

2

�10 � H1�
2 � �V1 � gI2��

2

�HḢ1 � � H1 � hE1

�Iİ1 � � I1 � E1

�Ė2 � � E2 �
100�V2 � gI1��

2

�10 � H2�
2 � �V2 � gI1��

2

�HḢ2 � � H2 � hE2

�Iİ2 � � I2 � E2 (1)

Here Vi is the input to the population i (i � 1, 2), Ei(t) is the firing rate
of the excitatory population i, Hi(t) is the adaptation variable, and Ii(t)
is the inhibitory firing rate. Note that all variables and parameters used
are dimensionless. The asymptotic firing rate (the gain function, the
second term on the right-hand side of the first and fourth expressions
in the Eq. 1 system) is determined by a Naka–Rushton function for
positive values of its argument (V � gI)�, where (V � gI)� � V �
gI if V � gI and (V � gI)� � 0 if V � gI (Naka and Rushton 1966).
The following values of the parameters are used: � � 20, �H � 900,
�I � 11, and h � 0.47, as in the original paper (Wilson 2003). The
values of the strength of the cross-inhibition parameter g considered
are 0.34, 0.42, and 0.44. [We assumed there was a typo in Wilson
(2003), where g is stated to be 45.0, which is two orders of magnitude
larger than it should be to obtain the behavior described there.]

The second model we consider is the Laing and Chow (LC) model
(Laing and Chow 2002). The mean-field dimensionless equations for
the LC model are the following

u̇1 � � u1 � f ��u1g1 � �u2g2 � a1 � I1�

�aȧ1 � � a1 � �af ��u1g1 � �u2g2 � a1 � I1�

�dġ1 � 1 � g1 � g1�df ��u1g1 � �u2g2 � a1 � I1�

u̇2 � � u2 � f ��u2g2 � �u1g1 � a2 � I2�

�aȧ2 � � a2 � �af ��u2g2 � �u1g1 � a2 � I2�

�dġ2 � 1 � g2 � g2�df ��u2g2 � �u1g1 � a2 � I2� (2)

Here ui represents the averaged activity of population i, normalized so
that its maximum value is 1; ai is the population adaptation variable,
with timescale �a; and gi is the synaptic depression variable, with
timescale �d. The gain function f is taken to be the Heaviside step
function, i.e., f (x) � 1 for x � 0 and f (x) � 0 for x � 0. The positive
inputs to the gain functions consist of the external stimulus and the
recurrent excitation term proportional to ui and scaled by �. The
negative inputs are the cross-inhibition term of strength � and the
adaptation term. Both recurrent excitation and cross-inhibition terms
are multiplicatively reduced by the synaptic depression variables.
Note that here, adaptation is incorporated in a manner different from
that in the Wilson model: it shifts the threshold of the gain function,
but does not change its slope. We will distinguish between the two
types of slow negative feedback: subtractive, when the threshold of
the gain function is shifted, and divisive, when the slope changes. The
former is realized in the LC and adaptation-LC models’ adaptation
process and the latter in both the LC and depression-LC models’
synaptic depression process and W model’s adaptation. We further
discuss the consequences of this distinction in later sections. The
following values of the parameters are used: � � 0.35, �a � �d �
0.6, �a � 20, and �d � 40, as in the original paper (Laing and Chow
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FIG. 1. Network architecture for (A) Wilson’s model and (B) Laing and
Chow (LC, adaptation-LC, and depression-LC) models. Excitatory and inhib-
itory connections are represented, respectively, by arrows and filled circles.
Dashed lines indicate that the recurrent excitation process is present in the LC
model, but is absent in the adaptation-LC and depression-LC models. Original
notation of Wilson (2003) and Laing and Chow (2002) is retained: in A, E1,2

is the activity of the excitatory populations, I1,2 is the activity of the inhibitory
populations, and V1,2 is the input. In B, u1,2 is the population activity and I1,2

is the input.
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2002). The strength of the cross-inhibition � considered is 0.01, 0.2
(as in the original paper), and 0.7.

To investigate the role of the slow processes in the system’s
behavior, we modify the LC model to include only the synaptic
depression or only the spike-frequency adaptation. To compare the
dynamics of the LC system with and without recurrent excitation, we
omit the recurrent excitation term in the gain function inputs. In
addition, linear (unsaturating) gain for slow process variables is
considered, unlike in the original LC model.

The model with synaptic depression only (depression-LC) is de-
scribed by the following system of equations

u̇1 � � u1 � f � � �u2g2 � I1�

�dġ1 � 1 � g1 � 	u1g1

u̇2 � � u2 � f � � �u1g1 � I2�

�dġ2 � 1 � g2 � 	u2g2 (3)

Instead of the step function, we consider a sigmoid gain, f (x) �
1/{1 � exp[�(x � 
)/k]}, where 1/k defines its slope and 
 defines the
threshold. Because the depression variable in this model works to
decrease the slope of the gain function, the depression-LC model is, in
fact, similar to the W model, in spite of the apparently different
mathematical implementation. We classify this model as having a
divisive slow process. The following values of parameters are used:
k � 0.1, 
 � 0.1, 	 � 0.3, and �d � 150. The values of the parameter
� are 0.47, 0.53, and 0.6.

Finally, the model with spike-frequency adaptation only (adapta-
tion-LC) is expressed in the following system of equations

u̇1 � � u1 � f � � �u2 � ga1 � I1�

�aȧ1 � � a1 � u1

u2 � � u2 � f � � �u1 � ga2 � I2�

�aȧ2 � � a2 � u2 (4)

where g is the strength of the adaptation. The gain function is again a
sigmoid. This model belongs to a class of models with a subtractive
slow process. Parameters used are: k � 0.1, 
 � 0.2, g � 0.5, �a �
100, and the values of � are 0.41, 0.9, and 1.1.

Table 1 summarizes the key features of the models that we are
considering.

Random behavior in all network models is simulated by introducing
a stochastic forcing term: in addition to external stimuli Ii, both
populations receive independent input noise ni. It is defined by the
following equation

ṅi � �
ni

�n

� ��2

�n

��t� (5)

where �(t) is white noise with zero mean and unit variance. The
resulting ni is an exponentially filtered white noise with standard
deviation � and timescale �n (Risken 1989). This choice of noise

models the synaptic filtering of inputs to a neuron (Moreno-Bote and
Parga 2004). The timescale for the noise is chosen to be faster than the
timescale of the slow negative feedback processes in the system, �n �
10. The strength of the noise is taken to be � � 0.03

We consider population i to be dominant and population j to be
suppressed if ui � uj. The strength of the input to the system (Vi in the
W model and Ii in the LC, adaptation-LC, and depression-LC models)
is assumed to increase monotonically with the stimulus strength
(typically, the contrast).

The deterministic models’ equations were implemented within
Mathematica software, using the predictor–corrector Adams method
with precision of 10�8. Stochastic equations were implemented within
C programming language using forward Euler’s method. The GNU
scientific library was used to obtain white noise distribution. Bifur-
cation diagrams were computed using a freely available software
package XPPAUT by G. B. Ermentrout (http://www.math.pitt.edu/
�bard/bardware).

R E S U L T S

Unless explicitly stated otherwise, all results presented be-
low are for deterministic models.

Spike-frequency adaptation as a divisive slow process

We start our analysis from the original W model (Eq. 1
system). In Fig. 2, the time courses of the network activity are
presented, for different values of the stimulus strength, equal in
both neuronal populations. Figure 2, A–E shows E1(t) and
E2(t), solid and dashed lines, for five values of input: V1 �
V2 � 38, 15, 6, 3.5, and 2. Values of the other parameters are
taken from the work of Wilson (2003) (see METHODS). The
values of V1 and V2 considered here correspond to five quali-
tatively different regimes of the network’s dynamics. In regime
I (Fig. 2A) the two populations are simultaneously active at a
high level: E1(t) equals E2(t) as t becomes larger than the
longest timescale in the system, �H, so that the transients have
decayed. Regime II (Fig. 2B) is oscillations, when the two
populations take turns in being active. In regime III (Fig. 2C)
we find winner-take-all behavior, when, depending on the
initial conditions, only one population remains active indefi-
nitely, whereas the other remains silent. Regime IV (Fig. 2D)
is again oscillatory. As demonstrated below, regimes II and IV
differ in how the oscillations’ period depends on the stimulus
strength. Finally, regime V (Fig. 2E) corresponds to what has
been termed “fusion” in experimental works: simultaneous,
low level of activity of the two populations (Liu et al. 1992).

As seen in Fig. 2, the behavior of the W model depends on
the value of the external input to the system. We varied the
input strength, common to both neuronal populations, between

TABLE 1. Key features of the considered models

Model

Feature

Architecture Adaptation Depression Gain Function

Wilson (W) Direct and indirect Yes (divisive) No Naka–Ruston
cross-inhibition, no self-excitation

Laing and Chow (LC) Direct cross-inhibition, self-excitation Yes (subtractive) Yes (divisive) Heaviside
Adaptation-LC Direct cross-inhibition, no self-excitation Yes (subtractive) No Sigmoid
Depression-LC Direct cross-inhibition, no self-excitation No Yes (divisive) Sigmoid

Varied parameters are stimulus strength (Vi in the W model and Ii in the LC, adaptation-LC, and depression-LC models) and strength of cross-inhibition (g
in the W model and � in the LC, adaptation-LC, and depression-LC models).
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0 and 40, to classify the system’s dynamics according to
whether oscillatory (rivaling) behavior exists and how the
oscillations’ period depends on the input. Figure 3A summa-
rizes results of the simulations. We observe the behavior of the
system and plot the period of oscillations of network as a
function of input strength (if oscillations are present).

There are five distinct regions in the period versus stimulus
strength diagram. For input values �34 (regime I), the system
does not oscillate. Instead, both populations are active at an
identically high level. For input strengths between 7.4 and 34
(regime II), rivaling behavior exists and the period of oscilla-
tions decreases as the stimulus strength increases. We call
regime II a decreasing duration (DD) regime. Further decrease
in the stimulus strength (between 4.2 and 7.4, regime III) leads
to disappearance of the oscillatory behavior. From the obser-
vations of the time course of the system (Fig. 2C) we conclude
that regime III is a winner-take all regime, when one popula-
tion is active and the other is inactive indefinitely (note that the
model does not contain noise). Whether population 1 or 2 is

active is determined by the initial conditions. Oscillations
resume as the stimulus strength becomes even smaller (be-
tween 2.2 and 4.2, regime IV). Unlike in regime II, however,
here the period of oscillations increases as the stimulus strength
increases. We call regime IV an increasing duration (ID)
regime. Finally, for inputs �2.2 (regime V), rivaling behavior
again ceases to exist and fusion at a low level of activity is
realized. The presence of the winner-take-all regime was ob-
served in the original report by Wilson, albeit in a different
context. The presence of the ID regime is a new prediction that
emerges from our analysis of the W model.

Properties of the system’s states in the different regimes can
be summarized with a compact graphical description (bifurca-
tion diagram) by plotting response amplitude versus stimulus
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strength (Fig. 3B). The diagram allows us to understand how
the system’s behavior changes from one regime to the next as
the stimulus (V � V1 � V2) is varied, complementing the
information in Fig. 3A that shows only the rivaling behavior.
First, we focus on the simultaneous activity state for strong
stimulus (regime I) indicated by SIM in Fig. 3B. Its amplitude
(firing rate) decreases with decreasing V as one expects. Ac-
cording to the curve this state exists (as a solution to the system
of differential equations in Eq. 1) for the full range of V.
However, we know that it gives way to oscillations as V
decreases below a critical value, when entering regime II. This
occurs because, even though the simultaneous activity solution
exists, it becomes unstable (as a solution to the differential
equations) for intermediate values of V (where the curve is
dashed). It corresponds, in a practical sense, to a nonsustain-
able state, i.e., any small random perturbations will be ampli-
fied and the system will move to the stable oscillatory or WTA
solution. As V passes through a critical value (filled circle) the
simultaneous activity solution changes character from a stable
fixed point with damped oscillatory behavior to a growing
oscillation. At this point, the rivaling state emerges, appearing
first with small oscillation amplitude (a Hopf bifurcation;
Guckenheimer and Holmes 2002). The upper and lower tines
of the forked solid curve (labeled RIV) represent the peak and
trough of the activity during a cycle. The winner-take-all
solution emerges from the (unstable) simultaneous activity
solution by a different type of bifurcation. Here, the control
state (SIM) loses or gains a mode of instability and the
emergent steady state actually involves two possible states
(open square). (By symmetry, either population 1 or 2 can be
dominant with the other suppressed.) Here the WTA state is
itself not stable at emergence (shown dashed). However, fol-
lowing along the WTA branch we see that stabilization occurs
(open circle). The scenario more or less repeats in the opposite
sequence as we continue to decrease V; the solution states of
WTA and rivalry disappear as the low-activity SIM state, or
fusion, becomes the only stable state for small stimulus
strength.

Change of the cross-inhibition strength leads to qualitative
changes in model dynamics

To investigate how the model’s behavior depends on the
choice of parameters, we first consider the effect of the time
constants of the slow negative feedback processes. In the W
model, as in all models considered below, increase in �H (�a or
�d in the LC, adaptation-LC, and depression-LC models), leads
to a proportional increase in the oscillations’ period. Transi-
tions between regimes of different behavior occur at bifurca-
tion points in the bifurcation diagrams. These points do not
change as the time constants of the slow processes change, as
long as these time constants are sufficiently large. The exis-
tence of oscillations and the qualitative behavior of the oscil-
lations’ period as a function of the stimulus strength are not
influenced by the time constants of the slow processes.

We varied the strength of the cross-inhibition parameter g to
see whether it influences the dynamics of the W model. In Fig.
3C we plot the oscillation period T as a function of input
strength for three values of g: g � 0.44 (square symbols, same
as in Fig. 3A, although notice the change in the scales of the
graphs in A and C), g � 0.42 (triangle symbols), and g � 0.34

(circles). We observe that as the inhibition strength decreases
from 0.44 to 0.42, the winner-take-all regime (regime III)
disappears. However, the period versus stimulus strength de-
pendency remains nonmonotonic, with an increasing duration
regime present. Further decrease in the inhibition strength (to
0.34) leads to the disappearance of the ID regime, so that only
the DD oscillatory regime remains, bounded by two simulta-
neous activity regimes, with a low-activity level for weak
stimuli and a high-activity level for strong stimuli. Note,
however, that as g decreases, alongside the disappearance of
the ID regime there is a dramatic decrease in the effect of
stimulus strength on durations in the DD regime, resulting in a
limited range of observable oscillation periods. Furthermore,
whereas for small values of g the period versus stimulus
strength dependency is monotonic, a 25–30% increase in the
inhibition strength results in a qualitative change in the dynam-
ics and a previously unreported type of behavior: nonmono-
tonic, and even discontinuous, period versus stimulus strength
dependencies. We will proceed to show that similar behavior is
observed in the other models of neuronal competition.

Synaptic depression as a divisive slow process

As mentioned in METHODS, the system that most closely
resembles the W model among the versions of the Laing and
Chow model we studied is the depression-LC model (Eq. 3
system). In both models, the slow process variables affect the
slope of the gain function for the activity variable. The appar-
ent difference between these models is the absence of separate
inhibitory populations in the depression-LC model; they are
present in the W model.

For depression-LC model we vary the strength of the input,
identical to both populations, I1 � I2, and plot the period of the
oscillations of the network activity in the input ranges where
they exist, for three values of the cross-inhibition strength �
(Fig. 4, A, C, and E). For the larger value of � (� � 0.6, Fig.
4A), we observe the same types of behaviors as in the W
model: simultaneous activity at high input, oscillations with the
period decreasing as input strength increases, winner-take-all
regime as input strength decreases further, followed by the
increasing duration oscillatory regime and fusion at the low-
activity level. In Fig. 4E, the results of the simulations for � �
0.47 are presented. For this value of the cross-inhibition, the
rivaling regime exists, with the period of oscillations decreas-
ing with increasing stimulus strength, bounded by two simul-
taneous activity regimes, at high- and low-activity levels. Note
that here, too, the range of observed periods is small compared
with that found for larger � values. At an intermediate value
� � 0.53 (Fig. 4C), whereas the winner-take-all regime dis-
appears, the dependency of period of oscillations on input
strength is still nonmonotonic.

The bifurcation diagrams of Fig. 4, B, D, and F represent the
underlying skeletons for the solution states for these three
values of �. Figure 4B is qualitatively like the corresponding
description (Fig. 3B) for the W model when inhibition is not
reduced. In Fig. 4, D and F we find the simpler scenario in
which simultaneous activity state or rivalry are the only at-
tracting states; rivalry emerges and disappears by Hopf bifur-
cations.

The intermediate case (Fig. 4D) suggests how the WTA
behavior disappears. Along the corresponding WTA solution
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branch the dominant and suppressed activity levels approach
each other as � decreases from 0.6, and at the same time the
range of input strengths where the stable WTA exists shrinks.
Beyond some critical value of � the WTA branch has shrunk
enough so that stable WTA disappears. The decreasing dura-
tion and increasing duration rivalry branches are no longer split
but they now form a continuous branch. However, the rivalry
alternations are still influenced by the “ghost” of the WTA
steady states, as represented by the dashed branch in Fig. 4D.
This remnant of the WTA branch is now unstable. There is an
I-range where the ghost is effective to induce long-period
rivalry; presumably the rivalry trajectory visits a region of
phase space near to the ghost and slowly moves there. This
leads to the nonmonotonic dependency of period on stimulus
intensity of Fig. 4C. This profile is the continuous extension of
the case from Fig. 4A where the period from left and right
became unbounded. Eventually (for even smaller �) the ghost
is gone and the possibility for the period to vary monotonically
with I is realized.

Spike-frequency adaptation as a subtractive slow process

Next, we performed simulations in the original Laing and
Chow (2002) model with recurrent excitation, spike-frequency
adaptation, and synaptic depression (LC model, Eq. 2 system)
with the parameters identical to those in their paper (Laing and
Chow 2002; see METHODS), but varying the cross-inhibition
strength parameter � (Fig. 5A). We find that for their value of
� � 0.2, the dependency of the period of oscillations T on the
stimulus strength is, in fact, nonmonotonic, with an increasing
duration regime at input strengths �0.25 (line with triangles in
Fig. 5A); this regime was not reported in their paper. Note that
in the Laing and Chow paper the values of the stimulus
strength are rescaled to compare the simulations with the
predictions of their spiking model. As in the models discussed
earlier, increase in the inhibition strength leads to the appear-
ance of the winner-take-all regime, where rivalry does not exist
(illustrated in Fig. 5A for � � 0.7, lines with squares). De-
creasing inhibition strength (to a very small value of 0.01 in the
case of the parameters in the LC model) leads to what appears
to be only a DD branch for period versus stimulus strength
(line with circles in Fig. 5A). However, this dependency is still
nonmonotonic on a finer scale.

Finally, we considered the adaptation-LC model (Eq. 4
system). In this system, as in the all systems discussed earlier,

change in the cross-inhibition strength leads to the qualitative
changes in the oscillation period versus stimulus strength
dependency (Fig. 5B). For large values of the inhibition
strength, this dependency is discontinuous, with the winner-
take-all regime for the intermediate values of the input strength
and the increasing duration regime for smaller values of input
(as shown by the lines with squares for � � 1.1 in Fig. 5B). As
� decreases, the period versus input dependency becomes
continuous, but remains nonmonotonic (as illustrated by the
line with triangles for � � 0.9 in Fig. 5B). Further decrease in
the value of the inhibition strength again leads to what looks
like the decreasing-duration–only behavior, but, in fact, it is
not (Fig. 5B, line with circles for � � 0.41). It can be shown
analytically in the particular case of the system described by
Eq. 4 that if the DD regime of the period versus input
dependency is present, then the ID regime must also be present
(R. Curtu et al., unpublished observations).
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Release and escape as mechanisms for generating
oscillations in neuronal competition models

During alternating oscillations, the two populations take
turns being active. When dominant, a population experiences
accumulating slow negative feedback, whereas feedback re-
covers when a population is suppressed. By intuitive reasoning,
a switch in dominance may occur in either of two ways,
depending on whether accumulation of or recovery from feed-
back is more influential in tipping the balance of net input to a
population. We say that “release” is the mechanism when the
switch-determining factor is accumulating negative feedback
that overcomes the stimulus to an active population. In this
case the active population loses control, its activity drops, and
it no longer suppresses the other population. Alternatively,
switching takes place by “escape” when in the inhibited pop-
ulation feedback recovers sufficiently so that the net input
changes from negative (suppressing) to positive (activating).
Now, the “down” population regains control, bounding into
activity and causing the other population to become inhibited.
In release, one might expect to observe more readily a decline
in activity of the dominant population compared with a rise in
the suppressed population, and the opposite behavior in escape.
However, behavior of the populations’ activities before the
switch will depend on the shapes of the input–output functions.
For example, in the case of Heaviside gain functions, discussed
in the following text, transitions are abrupt in both dominant
and suppressed populations.

If we suppose that slow negative feedback operates over a
finite range (say, because of saturation) we can understand that
release occurs for lower-stimulus ranges rather than for higher-
stimulus ranges (where adaptation might not be able to over-
come the stimulus) and conversely for escape. These mecha-
nisms of release and escape thus underlie the ID and DD
behaviors, respectively. We describe these correspondences for
a simplified model in the next paragraphs. The terms “release”
and “escape” were previously used to describe inhibition-
mediated rhythmic patterns in other neuronal systems (see
Wang and Rinzel 1992 and references therein).

We will use the adaptation-LC model (described by the Eq.
4 system) to explain the mechanistic basis for the decreasing
dominance (DD) and increasing dominance (ID) regimes in the
period versus stimulus strength dependency. Here, for simplic-
ity, we take the gain function to be a Heaviside step function,
i.e., f (x) � 1 for x � 0 and f (x) � 0 for x � 0. As a
consequence, the fast activity variables ui can only have the
value of one (active population) or zero (inactive population).
The slow adaptation variable ai of an active population grows
with timescale �a, whereas the adaptation variable of an inac-
tive population decreases with the same timescale.

As follows from Eq. 4, the switch between ui � 1 and ui �
0 occurs when the value of the gain function changes from 1 to
0, i.e., when the net input to a population, the value of the gain
function argument, (��uj � gai � Ii), changes sign from
positive to negative. In the release mechanism, the adaptation
variable of the “up” population increases so much that the sign
of the gain function argument for this population changes from
positive to negative. This population becomes inactive, there-
fore releasing the “down” population from inhibition; the
latter’s net input then rapidly becomes positive, bringing this
population “up.” The greater the input Ii, common to both

populations, the longer it takes for the negative-feedback
adaptation variable of the “up” population to grow enough to
change the net input (the argument of the gain function) from
positive to negative and to produce switching, and the longer
this population remains active. In the adaptation-LC model, a
stronger stimulus means longer dominance time, or ID behav-
ior during the oscillations realized by release mechanism.
Further, we can see that release can occur only if Ii is not large.
Because uj � 0 and ai cannot exceed 1, the sign change and
therefore release is precluded for Ii � g. Thus ID behavior is
realized in the low-stimulus regime.

In contrast, in the escape mechanism, the adaptation variable
of the “down” population decreases so much that the net input
to this population changes from negative to positive. This
population becomes active, or escapes from inhibition, and
promptly pushes the other population down. The greater the
stimulus, the less negative is the net input to the “down”
population and the less time it takes for the recovering (de-
creasing) adaptation to change the sign of the gain function
argument from negative to positive and to produce switching.
In the adaptation-LC model, stronger input means shorter
dominance time, or DD behavior during the oscillations pro-
duced by the escape mechanism. Escape can occur only if Ii is
large enough. Because uj � 1 and ai cannot decrease below 0,
Ii has to be ��, Ij � �, to allow for the sign change. DD
behavior is realized in the higher stimulus regime.

For intermediate stimulus strengths, rivalry alternations or
winner-take-all behavior may occur, depending on parameter
values (e.g., compare in Fig. 5B the cases � � 0.9 and � �
1.1). In the case of alternations the distinction between release
and escape may blur unless the gain function is very steep. For
the WTA regime (in the Heaviside case) we argue as follows.
From Eq. 4, the range of the adaptation variable is restricted; ai
can vary only between 0 and 1. Combinations of parameter
values (�, g, and Ii) exist when the variation of ai through this
range is not enough to change the sign of the gain function
argument and oscillations are impossible. If, say, � is suffi-
ciently large, then either release or escape is precluded for a
range of I-values that is intermediate between the ID and DD
branches. The net input to the active population i, (��*0 �
gai � Ii) varies between (Ii � g) and Ii, so it is always positive
if Ii � g. Similarly, the net input to the inactive population j,
(��*1 � gaj � Ij) varies between (�� � g � Ij) and (�� �
Ij), so it is always negative if Ij � �. In the case of large
inhibition strength (� � g), the range of the inputs exist (g �
Ii � �) such that neither the net input to the active population
nor that to the inactive population can change sign, and the
switch between activities is not possible. This range corre-
sponds to the WTA regime.

Similar arguments can be made in the case of the depres-
sion-LC model. If a sigmoid is used as a gain function, both ID
and DD branches of the period versus stimulus strength de-
pendency typically appear (see Fig. 3A). Both release and
escape mechanisms of producing oscillations are realized. The
depression-LC model with the Heaviside gain function is a
special case. The ID branch does not appear. Only the DD
branch appears and only the escape mechanism is realized,
explained by the fact that the negative feedback term is absent
in the gain function argument of the active population, thereby
precluding release.
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The release, escape, and winner-take-all behaviors that we
described earlier are compatible with the regimes seen on the
bifurcation diagrams like those that we presented for the
sigmoid gain functions (see Figs. 3B and 4B). A more detailed
and general analysis of the nonlinear differential equations
describing the models is possible but is beyond the scope of
this paper.

Nonmonotonic duration dependency, but not winner-take-all
behavior, is robust in the presence of noise

We induce random behavior in the firing rate network
models by introducing a stochastic (zero mean) component to
the external input (see METHODS). We illustrate the effects of
noise for the case of the depression-LC model (similar results
were obtained for all the other models). The model’s parame-
ters were taken such that the noise-free version exhibited all
five regimes of behavior as described earlier (Fig. 4A). In the
presence of noise, dominance durations vary randomly. The
major effect is that the winner-take-all regime of behavior
ceases to exist because the random input precludes the possi-
bility of one percept dominating forever. Consequently, the
mean period (over long runs) versus stimulus strength now
forms a continuous curve and, importantly, the nonmonotonic
dependency of period persists (Fig. 6A). Thus whereas winner-
take-all disappears, the increasing duration behavior for some
stimulus range does not: both ID and DD branches are seen in
the period versus stimulus strength dependency. With noise,
dominance switching occurs more frequently on average (com-
pared with the noise-free periods, shown in solid, from Fig.
4A). Figure 6B shows a typical time course of the network
activity in the presence of noise for the input strength I1 � I2 �
0.3. We also computed the distribution of random periods in
this model for that value of input strength (Fig. 6C). It appears
to be unimodal and skewed, with a longer tail at long periods,
consistent with experimental results (Fox and Herrmann 1967;
Logothetis et al. 1996).

D I S C U S S I O N

We considered several neuronal competition models to de-
scribe oscillatory dynamics during binocular rivalry. We fo-
cused on the behavior of these models as we vary the stimulus
(input) strength assumed equal for both populations. We used
previously published parameters of the original W and LC
models, and similar parameters in the adaptation-LC and de-
pression-LC models. We varied, as a system parameter, the
strength of cross-inhibition in the network. Here is a summary
of our main findings.

Five modes of behavior

In all considered models, we observed five distinct regimes
of behavior in different ranges of stimulus strength. Over a
range of strong stimulus strengths the period of rivaling oscil-
lations decreases with increasing input and then for very strong
stimuli alternation is lost—both populations are steadily,
highly, and identically active. For intermediate values of the
stimulus strength, a winner-take-all regime is present. Another
oscillatory regime exists for smaller inputs, with the period of
oscillations increasing as input increases. At very low stimulus
strengths the system goes into fusion with both populations

simultaneously active at a low level. Thus in general, period
depends nonmonotonically on stimulus strength with a winner-
take-all behavior that separates the two oscillatory regimes that
we have called increasing duration (ID) and decreasing dura-
tion (DD).We emphasize that the presence of the winner-take-
all and ID regimes is common to all mutual-inhibition models
that we considered.

We find that the existence of the winner-take-all and ID
regimes is controlled by the strength of inhibition between two
neuronal populations. The strength of inhibition is controlled
by � and thus it is this parameter that directly affects whether
there will be an increasing duration regime (as well as a
nonoscillatory regime). Our results indicate that there is a
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rather narrow range of � values where models show a mono-
tonic behavior, that is, a decreasing period of oscillations as
stimulus strength is increased from zero to large values. For
example, for the depression-LC, � has to be �0.47 to obtain
such monotonic behavior. Increasing � by only 25%, to a value
of 0.6, gives rise to the emergence of an increasing duration
regime for stimulus strengths between 0.11 and 0.16 and a
nonoscillatory regime for stimulus strengths between 0.16 and
0.41 (Fig. 4). It should also be noted that, because the increas-
ing duration behavior emerges for low-intensity stimuli, it is
not possible to eliminate nonmonotonic behavior by invoking
mechanisms of gain control that keep the stimulus strength
within a limited, prespecified range. Such mechanisms are
reasonable to hypothesize at the high end of stimulus strength,
i.e., as a means to ensure that the model does not receive inputs
that are stronger than what might be considered neurobiologi-
cally plausible. However, lowering the stimulus strength grad-
ually to zero is a natural process that need not be (and probably
cannot be) circumvented by gain control mechanisms and it is
in that range that the new, previously unreported behavior is
observed for � values outside the narrow range we have
characterized. In this study we investigated the occurrence of
multiple modes of behavior over ranges of stimulus intensity as
the strength of inhibition was varied. More generally, we
expect that multiple modes would also be found as other
system parameters are varied.

Relevance to experimental work on binocular rivalry

Experimental observations in binocular rivalry phenomena
led to the formulation of hypotheses known as Levelt’s Prop-
ositions (Levelt 1968). They state that during rivalry: (I)
“increase of the stimulus strength in one eye will increase the
predominance of the stimulus”; (II) “increase of the stimulus
strength in one eye will not effect dominance length for the
same eye”; (III) “increase of the stimulus strength in one eye
will increase the alternation frequency”; and (IV) “increase of
the stimulus strengths in both eyes will increase the alternation
frequency.” The presence of the increasing duration (ID) re-
gime in the models stands in contrast to Levelt’s Proposition
IV. However, although Levelt’s Propositions I through III were
tested in several later studies (e.g., Bossink et al. 1993;
Leopold and Logothetis 1996; Mueller and Blake 1989), this
has not been the case for Proposition IV. Levelt (1968) for-
mulated his Proposition IV based on previous experiments
(Alexander 1951; Alexander and Bricker 1952; Breese 1909;
Kaplan and Metlay 1964) that were limited compared with
what can be done experimentally nowadays in terms of both
stimulus generation and analysis. What is needed to test our
predictions are data about mean dominance durations as a
function of contrast over a wide range. However, the quantity
measured in the experiments that Levelt relied on was the
number of cycles per unit time, not the average dominance
durations. Many of the stimuli produced, in addition to periods
of exclusive dominance of one of the eyes, also periods of
“patchy” or mixed states, and therefore the number of cycles
per unit time do not provide full information about dominance
durations (a reanalysis could examine the latter quantity, but
the original data are not available). More recently, Hollins
(1980) measured dominance durations as a function of contrast
for 1° sinusoidal gratings. However, the data he presents

(Table 1) for two observers are inconclusive, showing different
trends for different observers and eyes. O’Shea et al. (1994)
present data from two observers where dominance durations
decrease (albeit moderately) as the luminance of two rivaling
sinusoidal gratings is increased from scotopic to photopic
levels, but it is not clear how such changes in luminance are
related to the more common way of changing stimulus strength
(contrast at photopic levels). In recent years, as interest in
binocular rivalry has been growing, there have been many
studies with sophisticated manipulations of context, ocular
element grouping, eye of origin, adaptation, and more (Bonneh
et al. 2001; Kovacs et al. 1996; Silver and Logothetis 2004;
Sobel and Blake 2002; Suzuki and Grabowecky 2002). Such
manipulations are difficult to relate to simplified models such
as those studied here, which use homogeneous neural subpopu-
lations to represent the abstract concepts of “competing per-
cepts.” In contrast, there is a dearth of modern studies provid-
ing information about how simple parameters such as stimulus
contrast affect the basic observables of dominance duration
mean and variance. Furthermore, electrophysiological record-
ings and brain imaging techniques now also provide an oppor-
tunity to observe the activity levels of the competing popula-
tions. Testing how these new observables are affected by
manipulation of stimulus strength can provide further con-
straints to distinguish between different models (see, e.g.,
Polonsky et al. 2000). Therefore our theoretical findings call
attention to the importance of testing Levelt’s Proposition IV,
which is more than thirty, by performing further experiments
with modern stimulus presentation and measurement tech-
niques over wide ranges of stimulus strength (Brascamp et al.
2006).

System’s behavior when the stimulus strength to the two
populations is asymmetrical

We may also consider the behavior of the system when the
stimulus to the two populations is asymmetrical; i.e., in the
context of binocular rivalry, the input to one eye remains
constant, whereas the other one changes (thus working within
the conditions of Levelt’s Propositions I through III). In the
case of the gain function being a Heaviside step function,
arguments similar to those presented earlier in section Release
and escape as mechanisms for generating oscillations in neu-
ronal competition models allow us to develop an intuition on
how the dominance times of the two populations change as the
input to only one of them changes.

In the adaptation-LC model with the Heaviside gain func-
tion, in the case where release is operative, the dominance time
of one population is defined by the amount of time this
population spends in the “up” state, which in turn is defined by
the strength of the input to this population. We can apply the
same reasoning as we did for the common stimulus strength
dependency. Increasing the input to one population increases
the dominance time of this same population, whereas the
dominance time of the other population remains virtually
unchanged. This behavior contradicts the conclusions of Lev-
elt’s Propositions I through III.

To the contrary, in the escape mechanism, the dominance
time of one population is defined by the amount of time the
other population spends in the “down” state, which is defined
by the strength of the input to that population. Decreasing the
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input to the population increases the dominance time of the
other population, whereas the dominance time of the affected
population remains roughly the same, in agreement with Lev-
elt’s Propositions I through III.

Similar arguments can be made in the case of the depres-
sion-LC model with the Heaviside gain function. Escape mech-
anism of producing oscillations leads to both DD behavior and
satisfaction of Levelt’s Propositions I through III.

In the case of the gain function taken to be a Heaviside step
function, our intuitive predictions are supported by the results
of the numerical simulations (not shown here). Whenever the
DD behavior of the period versus common stimulus strength
dependency is realized, and Levelt’s Proposition IV is satisfied,
Levelt’s Propositions I through III are satisfied as well. In
contrast, if Levelt’s proposition IV is not satisfied (ID branch
of the period vs. common stimulus strength dependency), we
find that Levelt’s Propositions I through III are also not
satisfied. In the case of the smooth sigmoid gain function, more
detailed mathematical analysis is necessary to test the gener-
ality of these observations.

Oscillations do not require recurrent excitation

In the classical firing rate models that are used to describe
network oscillations (e.g., Wilson and Cowan 1972), rhythmo-
genesis is realized by recurrent excitation and slow inhibitory
feedback. In three of the models that we studied (W, adapta-
tion-LC, and depression-LC), it is the cross-inhibition that
provides competition between two populations; no recurrent
excitation is required for the system to oscillate. Oscillations
are realized, instead, by the inclusion of a slow negative
feedback.

Note, nevertheless, that one of the models we studied does
include recurrent excitation—the LC model. As seen from Fig.
5A, this model demonstrates all the variety of behaviors ob-
served in the models without the recurrent excitation. We
studied the effect of adding recurrent excitation to the W model
as well and, again, we were able to find (not shown) a range of
cross-inhibition strength parameter where winner-take-all and
increasing duration oscillatory regimes were present. We con-
clude that the inclusion of the recurrent excitation does not
prevent the model from exhibiting multiple modes of behavior
that are not observed experimentally.

Inclusion of recurrent excitation may, in fact, have negative
consequences for models describing binocular rivalry. The
positive feedback from recurrent excitation can lead to rhyth-
mogenesis within an isolated population, that is, the activity of
a neuronal unit that is not connected to other units can oscillate
when presented with a stationary stimulus. This behavior, to
the best of our knowledge, has not been reported experimen-
tally. In addition, as noted by Wilson (2003), in the original W
model increase in the strength of the recurrent excitation leads
to the disappearance of rivalry.

Competition models in relation to central pattern generator
(CPG) models

Reciprocal inhibition architecture, found in models of bin-
ocular rivalry, is also used in the modeling of CPGs (Calabrese
1995; Getting 1988; Skinner et al. 1994). Models from these
two different contexts have major components that share qual-

itative features. These components may include an autocata-
lytic process, either synaptic by recurrent excitation or intrinsic
by voltage-gated persistent inward currents, and slow negative
feedback processes, such as synaptic depression and/or intrin-
sic adaptation. We noted in the preceding paragraph that
recurrent excitation is not essential for rivaling oscillations.
Similarly, CPG rhythmicity is possible without such autocatal-
ysis. A recent firing rate CPG model by Taylor et al. (2002) has
synaptic depression as a slow negative feedback process and
does not include recurrent excitation. Although our focus is
binocular rivalry, we conducted some exploratory simulations
of this model and found that it exhibits four of the five regimes
of behavior as in models of binocular rivalry. We used the
parameters as given by Taylor et al. (2002) (with W and � in
the range for their Fig. 5) and varied the stimulus intensity b,
current injected into a cell, over an extended range. As b was
decreased from a starting high value we found fusion at high
activity levels, then a regime of oscillations with the period
increasing as b decreases, then winner-take-all dynamics, and
finally fusion at low activity levels. Curiously, the nonoscillat-
ing states (not shown in Fig. 5 of Taylor et al. 2002) may, in
some cases, coexist with the “rivaling” oscillations. The pos-
sibility of such overlapping of region II with I or III could be
a valuable or problematic feature. Moreover, with modest
variation of parameters this model develops an increasing
duration regime, with or without the decreasing duration re-
gime; e.g., by shifting the sigmoid function �(u) rightward
along the u-axis, no more than one unit, in the ui but not di
dynamics (also, w � 5, � � 16). We conjecture that our
characterization of the multiple behavioral regimes (up to four
and five) as stimulus intensity is varied also applies to some
other CPG models, and we wonder how this relates to exper-
imental observations in such systems.

Two types of slow negative feedback: subtractive
and divisive

We considered several realizations of the slow processes in
our models. One is subtractive adaptation, used in the LC and
adaptation-LC models; the second is divisive adaptation in the
W models; and finally synaptic depression in the LC and
depression-LC models. As mentioned in METHODS, even though
divisive adaptation and synaptic depression are implemented
mathematically very differently, they both act to decrease the
slope of the gain function for the activity variable, as opposed
to the subtractive adaptation, which acts to shift the gain
function threshold. A computationally relevant distinction is
thus between subtractive and divisive slow processes, the
former for subtractive adaptation and the latter for both divi-
sive adaptation and synaptic depression. We notice that in the
models with divisive realization of the slow process, the
increasing duration behavior is less pronounced. As seen from
Figs. 3 and 4, the range of the left (increasing duration) regime
of the period versus stimulus strength dependency is less than
the range of the right (decreasing duration) regime. In the
models with a subtractive slow process, the DD and ID regimes
have comparable ranges (Fig. 5), although the range of the DD
regime in this case is larger than the range of the DD regime in
the divisive slow process models (about 0.4 in the LC and
adaptation-LC model vs. 0.15 in the depression-LC model; see
Figs. 4 and 5). Similar results were obtained by Tabak et al.
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(2005) in studying rhythmogenic behavior in excitatory net-
works. In their models, the dynamic range of oscillations in the
systems with a subtractive mechanism of slow process is larger
than in the systems with divisive mechanism. At the same time,
we find that a relatively small change in the cross-inhibition
strength parameter � in the divisive slow process models will
produce a transition from monotonic to nonmonotonic behav-
ior; for subtractive slow process models, even a large change in
� does not yield monotonic (DD-only) behavior. Because both
Laing and Chow (2002) and Wilson (2003) discuss only a
single model (each), no comparison between different imple-
mentations of the slow negative feedback processes was made
there. In Taylor et al. (2002), effects of synaptic depression
versus adaptation are discussed, but not in the context of the
oscillation period versus input current dependency.

Effects of noise on firing rate models of rivaling behavior

For the deterministic models (both the original W and LC
models, and adaptation-LC and depression-LC models) the
response becomes steady after a transient period after stimulus
introduction; the oscillations, once established, are regular.
Experimentally, however, the observed behavior is nondeter-
ministic. During rivalry, the dominance times of each percept
are randomly distributed (Fox and Herrmann 1967; Logothetis
et al. 1996). We simulated such randomness in all models by
introducing input noise. Not unexpectedly, the winner-take-all
regime is not sustained with stochastic input. Instead, in the
range of parameters where the winner-take-all regime existed
in the noise-free model, the system with noisy input shows
random rivaling alternations. However, the increasing duration
dynamics persists and the ranges of the decreasing duration and
increasing duration regimes are of the same order. We found
that even in some noise-free cases where weakened inhibition
had reduced or eliminated ID behavior (e.g., Fig. 4, C and F)
noisy input restored it (not shown). Although we induced
randomness by direct introduction of noisy input (as some
other studies had done; see, e.g., Freeman 2005; Lehky 1988),
in contrast, random behavior emerged in the deterministic
spiking neuron model of Laing and Chow (2002) because of
finite-size effects: a small number of units or connections (if
coupling is sparse). Importantly, even in the presence of noise
the alternations in the models that we are studying are driven
by a slow process. Although competition models that are
noise-driven have been introduced as well (see, e.g., Freeman
2005; Lumer 1998), we do not consider them here, and these
studies themselves did not look at the effect of simultaneously
varying the strength of both stimuli on the mean durations.

Other architectural issues

Newly predicted types of behavior that appear in the sim-
plified two-unit W and LC, adaptation-LC, and depression-LC
rate models are also observed in a spatially distributed model
for binocular rivalry. This firing rate model (R. Curtu et al.,
unpublished observations) assumes two homogeneous popula-
tions of neurons, excitatory (E) and inhibitory (I), distributed
on a one-dimensional ring network. For some parameter range,
as the equal strength of stimuli decreases, the patterns in the
network change from both populations being highly active, to
an alternation in activity between populations with the period

decreasing as the stimulus strength increases, to a winner-take-
all regime with only one of the two populations is active
forever, then oscillations with the period increasing as the
stimulus strength increases, followed by the regime when both
populations are inactive.

The presence of the separate inhibitory populations makes
the W model architecturally different from the LC and adap-
tation-LC and depression-LC models. Note, however, that the
timescales for the firing rate � and for the inhibition �I are both
much shorter than the timescale of adaptation �H; in addition,
�I �� �. Consequently, the inhibitory population tracks the
excitatory population almost instantaneously. This means
Ei(t) � Ii(t) in the Eq. 1 system, i.e., that mathematically, the
(fast) cross-inhibition can be effectively reduced to being
direct, in the same way as it is in the LC, adaptation-LC, and
depression-LC models. We observe the same qualitative be-
havior in a modified version of the W model with direct
inhibition as we did in the original W model. We conclude that
although having distinct excitatory and inhibitory populations
in a neuronal competition model is more biologically plausible
(in keeping with Dale’s principle; Nicoll and Malenka 1998),
from a computational perspective the model with indirect
inhibition is equivalent to a model with direct inhibition.

Dynamical characteristics common to neuronal computation
models

In conclusion, for all of the competition models that we
studied we find additional behaviors that differ qualitatively
from those previously reported. Earlier studies described alter-
nations for which the period only decreases as stimulus
strength increases. We find the existence of an oscillatory
regime in which the period increases as stimulus strength
increases, as well as a winner-take-all regime. Although it is
easier in some of the models to obtain decreasing dominance-
only dynamics by carefully choosing parameter values (in
particular, by reducing the strength of the cross-inhibition), we
find common to all the models that we tested very robust
nonmonotonic dependency of dominance period on stimulus
strength: increasing dominance and decreasing dominance
branches, sometimes separated by a winner-take-all regime.
Moreover, in the presence of noise, alternations become ran-
dom, winner-take-all behavior converts to alternation, and the
mean dominance period depends continuously and nonmono-
tonically on stimulus strength, first increasing and then de-
creasing. This behavior stands in contrast with empirical find-
ings summarized in Proposition IV of Levelt (1968). However,
this work is more than thirty years old and surprisingly there
are no reports of subsequent studies that duplicate the findings.
Our theoretical predictions therefore call for experiments to
reexamine with contemporary stimulus presentation and mea-
surement techniques the dependency of the properties of ri-
valry dynamics on stimulus intensity, in particular to consider
a broad range of stimulus strengths. If indeed dominance
period is strictly monotonic, decreasing with stimulus strength,
then a critical reconsideration of this class of mechanistic
models (competitive inhibition with slow negative feedback for
alternation) may be in order.
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