3 research outputs found

    Analysis of TCP performance for LTE-5G Millimeter Wave Dual Connectivity

    Get PDF
    The goal of this work is the analysis of the performance of the transport control protocol (TCP) in a Dual connectivity (DC) system, where both LTE and 5G millimeter wave (mmWave) were used in the radio access network, while a single user travels across the scenario. Since the user is moving, the interaction between the mmWave base stations (BSs) must be very efficient to avoid congestion events. This makes the analysis of DC very important. Simulation models based on open-source software frameworks were used to evaluate the performance of Dual connectivity for a 5G non-standalone (NSA) solution, where all the 5G base station traffic goes through the LTE base station. The scenarios proposed were defined in terms of non-line-of-sight/line-of-sight (NLOS/LOS) scenario, medium/high traffic, which are used to evaluate different TCP congestion control algorithms. The performance was then evaluated in terms of goodput, packet delivery ratio, standard deviation of bytes in-flight, and round-trip time. Simulation results showed that the number of bytes in-flight grows with high rates and large latencies caused by inter-BS communication. The mmWave medium is very sensitive to channel conditions specially in the middle point between mmWave BSs causing ping-pong effect during a handover (HO). At the beginning of the simulation some nodes overflow due to the aggressive slow start mechanisms, which turn to be very problematic for high traffic rates. In that sense, TCP Cubic proves to be a much reliable congestion control algorithm since it implements a hybrid slow start method

    Analysis of TCP performance for LTE-5G Millimeter Wave Dual Connectivity

    No full text
    The goal of this work is the analysis of the performance of the transport control protocol (TCP) in a Dual connectivity (DC) system, where both LTE and 5G millimeter wave (mmWave) were used in the radio access network, while a single user travels across the scenario. Since the user is moving, the interaction between the mmWave base stations (BSs) must be very efficient to avoid congestion events. This makes the analysis of DC very important. Simulation models based on open-source software frameworks were used to evaluate the performance of Dual connectivity for a 5G non-standalone (NSA) solution, where all the 5G base station traffic goes through the LTE base station. The scenarios proposed were defined in terms of non-line-of-sight/line-of-sight (NLOS/LOS) scenario, medium/high traffic, which are used to evaluate different TCP congestion control algorithms. The performance was then evaluated in terms of goodput, packet delivery ratio, standard deviation of bytes in-flight, and round-trip time. Simulation results showed that the number of bytes in-flight grows with high rates and large latencies caused by inter-BS communication. The mmWave medium is very sensitive to channel conditions specially in the middle point between mmWave BSs causing ping-pong effect during a handover (HO). At the beginning of the simulation some nodes overflow due to the aggressive slow start mechanisms, which turn to be very problematic for high traffic rates. In that sense, TCP Cubic proves to be a much reliable congestion control algorithm since it implements a hybrid slow start method

    Analysis of TCP performance for LTE-5G Millimeter Wave Dual Connectivity

    No full text
    The goal of this work is the analysis of the performance of the transport control protocol (TCP) in a Dual connectivity (DC) system, where both LTE and 5G millimeter wave (mmWave) were used in the radio access network, while a single user travels across the scenario. Since the user is moving, the interaction between the mmWave base stations (BSs) must be very efficient to avoid congestion events. This makes the analysis of DC very important. Simulation models based on open-source software frameworks were used to evaluate the performance of Dual connectivity for a 5G non-standalone (NSA) solution, where all the 5G base station traffic goes through the LTE base station. The scenarios proposed were defined in terms of non-line-of-sight/line-of-sight (NLOS/LOS) scenario, medium/high traffic, which are used to evaluate different TCP congestion control algorithms. The performance was then evaluated in terms of goodput, packet delivery ratio, standard deviation of bytes in-flight, and round-trip time. Simulation results showed that the number of bytes in-flight grows with high rates and large latencies caused by inter-BS communication. The mmWave medium is very sensitive to channel conditions specially in the middle point between mmWave BSs causing ping-pong effect during a handover (HO). At the beginning of the simulation some nodes overflow due to the aggressive slow start mechanisms, which turn to be very problematic for high traffic rates. In that sense, TCP Cubic proves to be a much reliable congestion control algorithm since it implements a hybrid slow start method
    corecore