25 research outputs found

    Implementation of Isavuconazole in a Fluorescence-Based High-Performance Liquid Chromatography Kit Allowing Simultaneous Detection of All Four Currently Licensed Mold-Active Triazoles

    Get PDF
    ABSTRACT Isavuconazole (ISZ) is a newly available broad-spectrum triazole agent recently approved for the treatment of both invasive aspergillosis and mucormycosis. The aim of this study was to develop a simple and reliable method for therapeutic drug monitoring (TDM) of ISZ in human plasma samples. The method involves using a kit from ChromSystems intended for TDM of itraconazole (ITZ), posaconazole (PSZ), and voriconazole (VRZ) in serum/plasma for sample preparation and high-performance liquid chromatography, using fluorescence detection with emission and excitation wavelengths set to 261 and 366 nm, respectively. The assay was linear over the ISZ concentration range of 0.2 to 20.0 mg/liter, using a 0.1-ml sample volume. The inter- and intraday coefficients of variation were all below 3.7%, whereas the accuracies ranged from 95.0 to 106.2% and the mean extraction recovery was 91.9%. In addition, the method worked well using four different Vacutainer types, with six different healthy volunteers and under a number of relevant storage conditions. Finally, the ISZ detection could be seamlessly implemented in the TDM kit for VRZ, PSZ, and ITZ, enabling simultaneous detection of all four triazoles. This method proved to be simple, accurate, precise, and well suited for routine analysis work. It has been implemented in our laboratory for the simultaneous quantitative analysis of ISZ, VRZ, PSZ, and ITZ for TDM and pharmacokinetic research. IMPORTANCE Isavuconazole is a new broad-spectrum triazole agent recently approved for the treatment of both invasive aspergillosis and mucormycosis. Currently, there is no consensus regarding the potential need for TDM of isavuconazole, and no therapeutic window has been defined. However, at the ECIL-6 meeting in 2015, it was advised that TDM is indicated in a number of different settings. In this study, we describe a rapid and validated isocratic HPLC method for fluorescence-based detection and quantification of isavuconazole in human plasma/serum samples. The method is simple and efficient with good accuracy and precision and importantly only requires a small volume of patient plasma/serum. Furthermore, this method is highly sensitive and selective and can be detected simultaneously with the three other triazoles, itraconazole, voriconazole, and posaconazole, without the need for expensive mass spectrometry equipment

    Peritoneal and genital coccidioidomycosis in an otherwise healthy Danish female:a case report

    Get PDF
    BACKGROUND: Coccidioidomycosis is a fungal infection that usually presents as a primary lung infection. The fungus is endemic to the Southwest United States of America, northern Mexico and parts of Central and South America the infection is rare outside these areas. However, some patients develop disseminated infection that can lie dormant for several years and can present itself in travelers. We report the first case of extra pulmonary Coccidioidomycosis in a non-immunocompromised individual in Denmark. CASE PRESENTATION: A 32 year old Danish woman presented at the Emergency department with abdominal pain. Computed tomography scan and ultrasound examination of the pelvis raised suspicion of salpingitis. A laparoscopy exposed a necrotic salpinx and several small white elements that resembled peritoneal carcinomatosis. Histological workup however determined that she suffered from disseminated coccidioidomycosis. The patient had lived 2 years in Las Vegas, in the United States of America, 7 years prior and had no memory of lung infection at the time. CONCLUSIONS: Disseminated coccidioidomycosis is rare in non-immunocompromised individuals. The patient in this case underwent several rounds of in vitro fertilization treatment in the years before admittance. We suspect that the hormonal treatment in combination with low-dose prednisolone may have triggered reemergence of the disease and present literature that support this

    Increasing Terbinafine Resistance in Danish Trichophyton Isolates 2019–2020

    Get PDF
    Terbinafine resistance in Trichophyton species has emerged and appears to be increasing. A new EUCAST susceptibility testing method and tentative ECOFFs were recently proposed for Trichophyton. Terbinafine resistance and target gene mutations were detected in 16 Danish isolates in 2013–2018. In this study, samples/isolates submitted for dermatophyte susceptibility testing 2019–2020 were examined. Species identification (ITS sequencing for T. mentagrophytes/T. interdigitale species complex (SC) isolates), EUCAST MICs and squalene epoxidase (SQLE) profiles were obtained. Sixty-three isolates from 59 patients were included. T. rubrum accounted for 81% and T. mentagrophytes/T. interdigitale SC for 19%. Approximately 60% of T. rubrum and T. mentagrophytes/interdigitale SC isolates were terbinafine non-wildtype and/or had known/novel SQLE mutations with possible implications for terbinafine MICs. All infections with terbinafine-resistant T. mentagrophytes/interdigitale SC isolates were caused by Trichophyton indotineae. Compared to 2013–2018, the number of patients with terbinafine-resistant Trichophyton isolates increased. For T. rubrum, this is partly explained by an increase in number of requests for susceptibility testing. Terbinafine-resistant T. indotineae was first detected in 2018, but accounted for 19% of resistance (4 of 21 patients) in 2020. In conclusion, terbinafine resistance is an emerging problem in Denmark. Population based studies are warranted and susceptibility testing is highly relevant in non-responding cases

    Stepwise emergence of azole, echinocandin and amphotericin B multidrug resistance in vivo in Candida albicans orchestrated by multiple genetic alterations

    Get PDF
    Objectives The objective of this study was to characterize the underlying molecular mechanisms in consecutive clinical Candida albicans isolates from a single patient displaying stepwise-acquired multidrug resistance. Methods Nine clinical isolates (P-1 to P-9) were susceptibility tested by EUCAST EDef 7.2 and Etest. P-4, P-5, P-7, P-8 and P-9 were available for further studies. Relatedness was evaluated by MLST. Additional genes were analysed by sequencing (including FKS1, ERG11, ERG2 and TAC1) and gene expression by quantitative PCR (CDR1, CDR2 and ERG11). UV-spectrophotometry and GC-MS were used for sterol analyses. In vivo virulence was determined in the insect model Galleria mellonella and evaluated by log-rank Mantel-Cox tests. Results P-1 + P-2 were susceptible, P-3 + P-4 fluconazole resistant, P-5 pan-azole resistant, P-6 + P-7 pan-azole and echinocandin resistant and P-8 + P-9 MDR. MLST supported genetic relatedness among clinical isolates. P-4 harboured four changes in Erg11 (E266D, G307S, G450E and V488I), increased expression of ERG11 and CDR2 and a change in Tac1 (R688Q). P-5, P-7, P-8 and P-9 had an additional change in Erg11 (A61E), increased expression of CDR1, CDR2 and ERG11 (except for P-7) and a different amino acid change in Tac1 (R673L). Echinocandin-resistant isolates harboured the Fks1 S645P alteration. Polyene-resistant P-8 + P-9 lacked ergosterol and harboured a frameshift mutation in ERG2 (F105SfsX23). Virulence was attenuated (but equivalent) in the clinical isolates, but higher than in the azole- and echinocandin-resistant unrelated control strain. Conclusions C. albicans demonstrates a diverse capacity to adapt to antifungal exposure. Potentially novel resistance-inducing mutations in TAC1, ERG11 and ERG2 require independent validatio

    Azole resistance in Aspergillus fumigatus. The first 2-year's Data from the Danish National Surveillance Study, 2018-2020

    Get PDF
    BACKGROUND: Azole resistance complicates treatment of patients with invasive aspergillosis with an increased mortality. Azole resistance in Aspergillus fumigatus is a growing problem and associated with human and environmental azole use. Denmark has a considerable and highly efficient agricultural sector. Following reports on environmental azole resistance in A. fumigatus from Danish patients, the ministry of health requested a prospective national surveillance of azole‐resistant A. fumigatus and particularly that of environmental origin. OBJECTIVES: To present the data from the first 2 years of the surveillance programme. METHODS: Unique isolates regarded as clinically relevant and any A. fumigatus isolated on a preferred weekday (background samples) were included. EUCAST susceptibility testing was performed and azole‐resistant isolates underwent cyp51A gene sequencing. RESULTS: The azole resistance prevalence was 6.1% (66/1083) at patient level. The TR(34)/L98H prevalence was 3.6% (39/1083) and included the variants TR(34)/L98H, TR(34) (3)/L98H and TR(34)/L98H/S297T/F495I. Resistance caused by other Cyp51A variants accounted for 1.3% (14/1083) and included G54R, P216S, F219L, G54W, M220I, M220K, M220R, G432S, G448S and Y121F alterations. Non‐Cyp51A‐mediated resistance accounted for 1.2% (13/1083). Proportionally, TR(34)/L98H, other Cyp51A variants and non‐Cyp51A‐mediated resistance accounted for 59.1% (39/66), 21.2% (14/66) and 19.7% (13/66), respectively, of all resistance. Azole resistance was detected in all five regions in Denmark, and TR(34)/L98H specifically, in four of five regions during the surveillance period. CONCLUSION: The azole resistance prevalence does not lead to a change in the initial treatment of aspergillosis at this point, but causes concern and leads to therapeutic challenges in the affected patients

    Update 2016-2018 of the Nationwide Danish Fungaemia Surveillance Study:Epidemiologic Changes in a 15-Year Perspective

    Get PDF
    As part of a national surveillance programme initiated in 2004, fungal blood isolates from 2016–2018 underwent species identification and EUCAST susceptibility testing. The epidemiology was described and compared to data from previous years. In 2016–2018, 1454 unique isolates were included. The fungaemia rate was 8.13/100,000 inhabitants compared to 8.64, 9.03, and 8.38 in 2004–2007, 2008–2011, and 2012–2015, respectively. Half of the cases (52.8%) involved patients 60–79 years old and the incidence was highest in males ≥70 years old. Candida albicans accounted for 42.1% of all isolates and Candida glabrata for 32.1%. C. albicans was more frequent in males (p = 0.03) and C. glabrata in females (p = 0.03). During the four periods, the proportion of C. albicans decreased (p < 0.001), and C. glabrata increased (p < 0.001). Consequently, fluconazole susceptibility gradually decreased from 68.5% to 59.0% (p < 0.001). Acquired fluconazole resistance was found in 4.6% Candida isolates in 2016–2018. Acquired echinocandin resistance increased during the four periods 0.0%, 0.6%, 1.7% to 1.5% (p < 0.0001). Sixteen echinocandin-resistant isolates from 2016–2018 harboured well-known FKS resistance-mutations and one echinocandin-resistant C. albicans had an FKS mutation outside the hotspot (P1354P/S) of unknown importance. In C. glabrata specifically, echinocandin resistance was detected in 12/460 (2.6%) in 2016–2018 whereas multidrug-class resistance was rare (1/460 isolates (0.2%)). Since the increase in incidence during 2004–2011, the incidence has stabilised. In contrast, the species distribution has changed gradually over the 15 years, with increased C. glabrata at the expense of C. albicans. The consequent decreased fluconazole susceptibility and the emergence of acquired echinocandin resistance complicates the management of fungaemia and calls for antifungal drug development

    A Pragmatic Approach to Susceptibility Classification of Yeasts without EUCAST Clinical Breakpoints

    No full text
    EUCAST has established clinical breakpoints for the six most common Candida species and Cryptococcus neoformans but not for less common yeasts because sufficient evidence is lacking. Consequently, the question &ldquo;How to interpret the MIC?&rdquo; for other yeasts often arises. We propose a pragmatic classification for amphotericin B, anidulafungin, fluconazole, and voriconazole MICs against 30 different rare yeasts. This classification takes advantage of MIC data for more than 4000 isolates generated in the EUCAST Development Laboratory for Fungi validated by alignment to published EUCAST MIC data. The classification relies on the following two important assumptions: first, that when isolates are genetically related, pathogenicity and intrinsic susceptibility patterns may be similar; and second, that even if species are not phylogenetically related, the rare yeasts will likely respond to therapy, provided the MIC is comparable to that against wild-type isolates of more prevalent susceptible species because rare yeasts are most likely &ldquo;rare&rdquo; due to a lower pathogenicity. In addition, the treatment recommendations available in the current guidelines based on the in vivo efficacy data and clinical experience are taken into consideration. Needless to say, it is of utmost importance (a) to ascertain that the species identification is correct (using MALDI-TOF or sequencing), and (b) to re-test the isolate once or twice to confirm that the MIC is representative for the isolate (because of the inherent variability in MIC determinations). We hope this pragmatic guidance is helpful until evidence-based EUCAST breakpoints can be formally established
    corecore