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Objectives: The objective of this study was to characterize the underlying molecular mechanisms in consecutive
clinical Candida albicans isolates from a single patient displaying stepwise-acquired multidrug resistance.

Methods: Nine clinical isolates (P-1 to P-9) were susceptibility tested by EUCAST EDef 7.2 and Etest. P-4, P-5, P-7,
P-8 and P-9 were available for further studies. Relatedness was evaluated by MLST. Additional genes were
analysed by sequencing (including FKS1, ERG11, ERG2 and TAC1) and gene expression by quantitative PCR
(CDR1, CDR2 and ERG11). UV-spectrophotometry and GC-MS were used for sterol analyses. In vivo virulence
was determined in the insect model Galleria mellonella and evaluated by log-rank Mantel–Cox tests.

Results: P-1+P-2 were susceptible, P-3+P-4 fluconazole resistant, P-5 pan-azole resistant, P-6+P-7 pan-azole
and echinocandin resistant and P-8+P-9 MDR. MLST supported genetic relatedness among clinical isolates. P-4
harboured four changes in Erg11 (E266D, G307S, G450E and V488I), increased expression of ERG11 and CDR2 and
a change in Tac1 (R688Q). P-5, P-7, P-8 and P-9 had an additional change in Erg11 (A61E), increased expression of
CDR1, CDR2 and ERG11 (except for P-7) and a different amino acid change in Tac1 (R673L). Echinocandin-resistant
isolates harboured the Fks1 S645P alteration. Polyene-resistant P-8+P-9 lacked ergosterol and harboured a
frameshift mutation in ERG2 (F105SfsX23). Virulence was attenuated (but equivalent) in the clinical isolates,
but higher than in the azole- and echinocandin-resistant unrelated control strain.

Conclusions: C. albicans demonstrates a diverse capacity to adapt to antifungal exposure. Potentially novel
resistance-inducing mutations in TAC1, ERG11 and ERG2 require independent validation.
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Introduction
Candida albicans is inherently susceptible to all antifungal drugs.
Monoresistance to azoles or echinocandins and a few cases of
combined azole and amphotericin B resistance have been
reported, but multidrug resistance covering all three drug classes
is a rare and, to our knowledge, previously unreported phenom-
enon in C. albicans.1

Azole resistance in C. albicans is often an interplay of: (i) struc-
tural changes of Erg11 (14a-methyl sterol demethylase),
the target of azoles; (ii) overexpression of ERG11; and (iii)
increased cellular export of azoles by up-regulated drug efflux
transporters.2 The genetic regulation of azole resistance involves

ERG11 up-regulation linked to specific gain-of-function (GOF)
mutations in zinc cluster transcription factor UPC23 as well as
increases in copy number due to isochromosome formation or
duplication of chromosome 5.4 Likewise, GOF mutations in tran-
scription factors TAC1 and MRR1 lead to up-regulation of drug
efflux pumps CDR1/CDR2 and MDR1, respectively.5 Acquired echi-
nocandin resistance in C. albicans has been linked to structural
alterations of the target enzyme Fks1 (1,3-b-D-glucan synthase),
which is essential for cell wall synthesis.6 Resistance to polyenes
in C. albicans is rare, but has been linked to inactivation of essen-
tial proteins in ergosterol biosynthesis leading to ergosterol
depletion (the target of amphotericin B) and the formation of
other sterols.2
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Here, we present a detailed molecular assessment of the
underlying genetic mechanisms contributing to the sequential
development of unique MDR strains by evaluation of consecutive
C. albicans isolates from a single patient.

Brief case report
A man in his early sixties with angioimmunoblastic T cell lymph-
oma underwent stem cell transplantation in 2006 followed by
long-term pancytopenia and recurrent infections including
numerous episodes of oropharyngeal and oesophageal candidia-
sis despite various courses of antifungal treatment (Figure S1,
available as Supplementary data at JAC Online). Increasingly
resistant C. albicans isolates were found in oesophageal and
colon biopsies and faeces before the patient died in 2011.

Materials and methods

Strains and susceptibility testing
Nine clinical isolates obtained in 2006–11 underwent susceptibility testing
at the Statens Serum Institut according to EUCAST EDef 7.2 (azoles
and anidulafungin) and by Etest (amphotericin B and caspofungin).7

Susceptibility was interpreted by using the established EUCAST break-
points (http://www.eucast.org/clinical_breakpoints/) and CLSI breakpoints
for Etests.8 – 11

Sequencing and gene expression analysis
Five isolates (P-4, P-5, P-7, P-8 and P-9) were available for molecular ana-
lyses (Table 1). MLST was performed as described previously12 and add-
itional genes were sequenced (notably FKS1, ERG11, ERG2, UPC2 and
TAC1).13 – 15 Gene expression analysis was performed for ERG11 and drug
efflux pumps CDR1 and CDR2 by RNA quantification using quantitative
PCR (qPCR) as described previously.15 All primers used in this study are pro-
vided in Table S1.

Sterol composition
Sterol analysis was performed by: (i) spectrophotometric UV absorption
profiles on non-saponifiable fractions of lipids extracted with n-heptane
through vigorous vortex agitation by a simplified protocol from a previous
study and measured between 240 and 320 nm;16 and (ii) GC-MS. Sterols
were extracted with NaOH and methanol at 908C and further by pentane
phase separation and dissolved in 2-propanol. Next, 50 mL of the extract
was further evaporated to dryness, derivatized to trimethylsilyl ethers
and analysed as described previously.17

Virulence determination in the Galleria mellonella
larvae model
Virulence was evaluated in the insect model G. mellonella caterpillars
as described previously.18 Caterpillars (250 –325 mg, HPReptiles,
Copenhagen, Denmark) were inoculated in groups of 20 or 25 and the
inocula were standardized to achieve an 80% mortality of WT isolates
within 5 days (�5×105 cells/larvae). Caterpillars were incubated at 378C
for up to 5 days after inoculation. Groups were compared using the
log-rank Mantel–Cox test (Prism 6.05, GraphPad). P values of ,0.05
were considered significant.

Results and discussion

Antifungal treatment and susceptibility profiles

During long-term antifungal treatment (Figure S1), antifungal
resistance emerged in a stepwise manner (Table 1). Fluconazole

resistance was found in P-3 (after a total of 34 weeks of fluconazole
therapy), pan-azole resistance in P-5 (after 8 weeks of voriconazole
and 96 weeks of posaconazole exposure), echinocandin resistance
in P-6 (after �6 weeks of caspofungin and anidulafungin exposure)
and, finally, multidrug resistance emerged in P-8 (after 9 weeks of
either nystatin or amphotericin B treatment).

MLST analysis

Identical diploid STs were found for isolates P-7, P-8 and P-9
(21-26-14-19-72-102-84), suggesting that they were isogenic.
P-4 (21-26-14-18-76-102-84) and P-5 (21-26-14-18-72-102-84)
deviated in the MP1b and SYA1 alleles. When including additional
sequenced genes such as FKS1, ERG11 and ERG2 in an expanded
MLST analysis, there was an even stronger hereditary link suggest-
ing a common progenitor and the stepwise selection of isogenic
MDR offspring.

Fluconazole resistance

Among four amino acid changes identified in Erg11 of the
fluconazole-resistant isolate P-4 (Table 1), G307S and G450E
have previously been associated with fluconazole resistance and
confirmed in genetically engineered C. albicans.19 Hence, these
mutations may have been significant drivers of fluconazole resist-
ance in P-4 and probably further potentiated by elevated expres-
sion levels of ERG11 and particularly CDR2 (Table 1).

Pan-azole resistance

Subsequent pan-azole-resistant clinical isolates possessed an
additional alanine to glutamic acid change (A61E) in Erg11
(Table 1). A61E is novel, but involves a codon (A61V) previously
indicated to slightly impact binding of and susceptibility to itra-
conazole and posaconazole.20 Compared with the A61V alter-
ation, a change from the hydrophobic alanine to the acidic and
much larger glutamic acid found here would be expected to
have a stronger effect on interference with long-tailed azoles.
Protein modelling (Figure S2) illustrates steric interference of
A61E with the tail of itraconazole and thus is consistent with
this hypothesis, although independent validation remains neces-
sary. Overexpression of ERG11 (except for P-7), CDR1 and CDR2
may have contributed to azole resistance, especially to voricon-
azole in P-5 through P-9.

Elevated gene expression and genetic precursors

ERG11 up-regulation may have been a compensatory mechanism
(independent of UPC2 mutations) to avoid ergosterol depletion
associated with the potentially reduced catalytic activity of the
Erg11 variants.21,22

CDR1 and especially CDR2 up-regulation was detected in high
relative levels in all azole-resistant clinical isolates (Table 1). TAC1
sequencing revealed a novel amino acid change (R688Q) in P-4.
Whether this alteration mediated the up-regulation particularly
of CDR2 in P-4 deserves further investigation.23 The allelic state
of TAC1 was heterozygous in P-4, but homozygous in P-5 through
P-9; thus, it is likely that the TAC1 locus underwent a ‘loss of het-
erozygosity’ from P-4 to P-5, which is a phenomenon frequently
associated with azole resistance.4 Additionally, another novel
TAC1 change (R673L) was found in P-5 through P-9 (Table 1),
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which displayed even higher expression levels of CDR1 and CDR2,
indicating the potential of another novel GOF variant and should
be independently validated in future studies.24

Echinocandin resistance and FKS1 mutations

Echinocandin-resistant clinical isolates harboured a (heterozy-
gous) mutation in FKS1 leading to the amino acid change S645P
(Table 1), which is well known to confer high-level echinocandin
resistance.25

Amphotericin B resistance

Sequencing of essential genes in the ergosterol biosynthetic path-
way revealed a heterozygous frameshift mutation in ERG2
(encoding D8�7 isomerase) at amino acid position Phe-105
(F105SfsX23) in P-7, but homozygous in the amphotericin
B-resistant isolates P-8 and P-9. This caused a truncated protein
sequence reduced from 217 to 126 amino acids (Table 1), which

may presumably be associated with protein function inactivation.
In support, an amino acid disruption in Erg2 corresponding to
Thr-115 in C. albicans was critical for sterol D8�7 isomerization
in other Candida species.26,27 GC-MS analysis showed that P-8
and P-9 were depleted of ergosterol and instead displayed an accu-
mulation of ergosta-8-enol, ergosta-8,22-dienol, ergosta-5,8,22-
trienol and fecosterol as well as a few other sterols (Figure 1).
This sterol profile matches previous findings involving ERG2 deletion
mutants.26,28 Thus, although supported by the literature, an inde-
pendent validation is necessary to address whether the ERG2
mutation alone is able to confer polyene resistance.

Virulence of the resistant isolates

Acquired resistance in C. albicans may come at a fitness and viru-
lence cost.15,29,30 The two susceptible control strains C-1 and C-2
were equally virulent (P¼0.2) and resulted in day 5 mortality of
88% and 98%, respectively (Figure 1). P-4 was statistically less

Table 1. Characteristics of nine clinical isolates: site and date obtained, susceptibility, gene products and relative gene expression levels

P-1 (WT) P-2 (WT) P-3 (F) P-4 (F) P-5 (A) P-6 (A+E) P-7 (A+E) P-8 (MDR) P-9 (MDR)

Site oesophagusa oesophagusa oropharynxb oropharynxb oesophagusa oesophagusa faecesb faecesb colon biopsya

Date 25.04.06 11.07.06 28.01.08 01.04.08 21.04.10 17.08.10 10.04.11 10.04.11 06.05.11

FLCc 0.125 0.25 16 8 .16 .16 .16 .16 16
ITCc ≤0.03 ≤0.03 ≤0.03/4d ≤0.03 16 .4 16 16 .16
VRCc ≤0.03 ≤0.03 ≤0.03/4d ≤0.03 1 0.5 0.25 0.125 0.125
POSc NA NA ≤0.03/4d ≤0.03 .4 .4 4 4 0.5/4d

ANIc NA NA NA 0.015 0.015 0.25 1 1 0.5
CASe 0.06 0.25 0.25 0.25 0.50 .32 .32 .32 .32
AMBe 0.25 0.5 0.38 0.5 0.5 0.5 0.5 .32 .32

Erg11f NA NA NA E266D
G307S
G450E
V488I

A61E
E266D
G307S
G450E
V488I

NA A61E
E266D
G307S
G450E
V488I

A61E
E266D
G307S
G450E
V488I

A61E
E266D
G307S
G450E
V488I

ERG11(expr.)g NA NA NA 4.85 12.3 NA 0.43 5.70 3.44
CDR1(expr.)g NA NA NA 1.69 7.40 NA 2.95 4.73 1.45
CDR2(expr.)g NA NA NA 69.2 868.1 NA 194.8 132.5 14.5
Tac1f,h NA NA NA R688Qi R673L NA R673L R673L R673L
Fks1f NA NA NA V661Fi V661Fi NA S645Pi

V661Fi
S645Pi

V661Fi
S645Pi

V661Fi

Erg2f NA NA NA WT WT NA F105fsi,j F105fsj F105fsj

WT, WT susceptibility; F, fluconazole resistant; A, azole resistant; E, echinocandin resistant; FLC, fluconazole; ITC, itraconazole; VRC, voriconazole;
POS, posaconazole; ANI, anidulafungin; CAS, caspofungin; AMB, amphotericin B; NA, not available.
MIC values above clinical breakpoints and regarded as resistant are highlighted grey.
Underlined amino acid changes are considered to be associated with resistance.
aPrimary specimen.
bCulture.
cEUCAST (EDef 7.2) MIC (mg/L).
dTrailing phenotype with �50% growth inhibition in the concentration range 0.5–4 mg/L.
eEtest MIC (mg/L).
fAmino acid change.
gChanges in gene expression (fold) normalized to ACT1 expression and relative to that of control wild-type strain SC5314.
hThe TAC1 gene sequence harboured multiple non-synonymous mutations, but only potential GOF mutations are shown.
iHeterozygous.
jFrameshift mutation F105SfsX23 due to a 1 bp deletion (314delT).
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virulent than both WT control isolates, but all clinical isolates were
significantly more virulent than an unrelated azole- and
echinocandin-resistant control strain C-3 (displaying 51% overall-
mortality). The virulence of the clinical isogenic isolates was only
slightly reduced compared with that of the susceptible control
strains, indicating that compensatory mechanisms may have
abrogated virulence cost in these MDR isolates.

Conclusions

Here, we presented a suite of well-known and novel genetic
mechanisms contributing to the sequential development of
resistance to all three antifungal drug classes, which to the best
of our knowledge is the first example of multidrug resistance
emerging in vivo in C. albicans. Interestingly, the observed resist-
ance came without significant virulence cost. The superficial
nature of the infection, where subtherapeutic concentrations
are more common, may have facilitated the emergence of resist-
ance. Our study is associated with several limitations. Most
importantly, we did not have the initial susceptible clinical isolates
as such superficial WT strains are not routinely stored. Secondly,

we have addressed and argued for several potential resistance
mechanisms and hypothesized novel findings supported by exist-
ing knowledge. However, the significance of these findings
requires independent validation.
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Figure 1. Strain characteristics. (a) GC-MS chromatograms for sterol in WT, P–8 and P–9 isolates following growth in yeast extract peptone dextrose
(YEPD) medium. Sterol intermediates are as follows: 1, ergosta-5,8,22-trienol; 2, ergosta-8,22-dienol; 3, ergosterol; 4, fecosterol; 5, ergosta-8-enol; 6,
14a methyl ergosta 8,24(28)-dien-3b,6a-diol; 7, lanosterol; 8, ergosta-8-en-diol; and 9, unknown sterol. (b) Virulence in the G. mellonella larvae model.
Letters in round brackets denote susceptibility profiles: WT, WT susceptibility; F, fluconazole resistant; A, azole resistant; and E, echinocandin resistant.
Mean cells/larva injected (×105) are indicated in square brackets. Broken lines indicate reference strains and continuous lines indicate clinical isolates.
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