143 research outputs found

    Temperature-Dependent Magnetoelectric Effect from First Principles

    Get PDF
    We show that nonrelativistic exchange interactions and spin fluctuations can give rise to a linear magnetoelectric effect in collinear antiferromagnets at elevated temperatures that can exceed relativistic magnetoelectric responses by more than 1 order of magnitude. We show how symmetry arguments, ab initio methods, and Monte Carlo simulations can be combined to calculate temperature-dependent magnetoelectric susceptibilities entirely from first principles. The application of our method to Cr2O3 gives quantitative agreement with experiment.

    Analysis of optical magnetoelectric effect in GaFeO_3

    Full text link
    We study the optical absorption spectra in a polar ferrimagnet GaFeO_3. We consider the E1, E2 and M1 processes on Fe atoms. It is shown that the magnetoelectric effect on the absorption spectra arises from the E1-M1 interference process through the hybridization between the 4p and 3d states in the noncentrosymmetry environment of Fe atoms. We perform a microscopic calculation of the spectra on a cluster model of FeO_6 consisting of an octahedron of O atoms and an Fe atom displaced from the center with reasonable values for Coulomb interaction and hybridization. We obtain the magnetoelectric spectra, which depend on the direction of magnetization, as a function of photon energy in the optical region 1.0-2.5 eV, in agreement with the experiment.Comment: 18 pages, 5 figure

    Theoretical prediction of multiferroicity in double perovskite Y2_2NiMnO6_6

    Full text link
    We put forward double perovskites of the R2_2NiMnO6_6 family (with RR a rare-earth atom) as a new class of multiferroics on the basis of {\it ab initio} density functional calculations. We show that changing RR from La to Y drives the ground-state from ferromagnetic to antiferromagnetic with \uparrow\uparrow\downarrow\downarrow spin patterns. This E^*-type ordering breaks inversion symmetry and generates a ferroelectric polarization of few μC/cm2\mu C/cm^2. By analyzing a model Hamiltonian we understand the microscopic origin of this transition and show that an external electric field can be used to tune the transition, thus allowing electrical control of the magnetization.Comment: 4 pages, 3 figure

    Relativistic nature of a magnetoelectric modulus of Cr_2O_3-crystals: a new 4-dimensional pseudoscalar and its measurement

    Full text link
    Earlier, the magnetoelectric effect of chromium sesquioxide Cr_2O_3 has been determined experimentally as a function of temperature. One measures the electric field-induced magnetization on Cr_2O_3 crystals or the magnetic field-induced polarization. From the magnetoelectric moduli of Cr_2O_3 we extract a 4-dimensional relativistic invariant pseudoscalar α~\widetilde{\alpha}. It is temperature dependent and of the order of 10^{-4}/Z_0, with Z_0 as vacuum impedance. We show that the new pseudoscalar is odd under parity transformation and odd under time inversion. Moreover, α~\widetilde{\alpha} is for Cr_2O_3 what Tellegen's gyrator is for two port theory, the axion field for axion electrodynamics, and the PEMC (perfect electromagnetic conductor) for electrical engineering.Comment: Revtex, 36 pages, 9 figures (submitted in low resolution, better quality figures are available from the authors

    Terahertz spectroscopy of electromagnons in Eu_{1-x}Y_xMnO_3

    Full text link
    Dielectric permittivity spectra of yttrium-doped EuMnO3_3 in the composition range 0 =< x =< 0.5 have been investigated in the terahertz frequency range. Magnetoelectric contributions to the permittivity were observed in all compositions for ac electric fields parallel to the crystallographic a-axis. Well defined electromagnons exist for x >= 0.2 close to \nu ~ 20 cm^{-1} and with dielectric strength strongly increasing on doping. In addition to electromagnons, a broad contribution of magnetoelectric origin is observed for all compositions. For Eu_{0.8}Y_{0.2}MnO_3 the electromagnons can be suppressed by external magnetic fields which induce a canted antiferromagnetic phase. Magnetoelectric effects in the different doping regimes are discussed in detail.Comment: 7 pages, 9 figures include

    Neel state of antiferromagnet as a result of a local measurement in the distributed quantum system

    Get PDF
    Single-site measurement in a distributed macroscopic antiferromagnet is considered; we show that it can create antiferromagnetic sublattices at macroscopic scale. We demonstrate that the result of measurement depends on the symmetry of the ground state: for the easy-axis case the Neel state is formed, while for the easy-plane case unusual ``fan'' sublattices appear with unbroken rotational symmetry, and a decoherence wave is generated. For the latter case, a macroscopically large number of measurements is needed to pin down the orientation of the sublattices, in spite of the high degeneracy of the ground state. We note that the type of the final state and the appearance of the decoherence wave are governed by the degree of entanglement of spins in the system.Comment: 4 REVTeX pages, 1 figure in PostScrip

    Magnetic control of large room-temperature polarization

    Full text link
    Numerous authors have referred to room-temperature magnetic switching of large electric polarizations as The Holy Grail of magnetoelectricity.We report this long-sought effect using a new physical process of coupling between magnetic and ferroelectric relaxor nano-regions. Here we report magnetic switching between the normal ferroelectric state and the ferroelectric relaxor state. This gives both a new room-temperature, single-phase, multiferroic magnetoelectric, PbZr0.46Ti0.34Fe0.13W0.07O3, with polarization, loss (<4%), and resistivity (typically 108 -109 ohm.cm) equal to or superior to BiFeO3, and also a new and very large magnetoelectric effect: switching not from +Pr to negative Pr with applied H, but from Pr to zero with applied H of less than a Tesla. This switching of the polarization occurs not because of a conventional magnetically induced phase transition, but because of dynamic effects: Increasing H lengthens the relaxation time by x500 from 100 ?s, and it couples strongly the polarization relaxation and spin relaxations. The diverging polarization relaxation time accurately fits a modified Vogel-Fulcher Equation in which the freezing temperature Tf is replaced by a critical freezing field Hf that is 0.92 positive/negative 0.07 Tesla. This field dependence and the critical field Hc are derived analytically from the spherical random bond random field (SRBRF) model with no adjustable parameters and an E2H2 coupling. This device permits 3-state logic (+Pr,0,negative Pr) and a condenser with >5000% magnetic field change in its capacitance.Comment: 20 pages, 5 figure

    Superexchange-Driven Magnetoelectricity in Magnetic Vortices

    Get PDF
    We demonstrate that magnetic vortices in which spins are coupled to polar lattice distortions via superexchange exhibit an unusually large linear magnetoelectric response. We show that the periodic arrays of vortices formed by frustrated spins on Kagom\'e lattices provide a realization of this concept; our {\it ab initio} calculations for such a model structure yield a magnetoelectric coefficient that is 30 times larger than that of prototypical single phase magnetoelectrics. Finally, we identify the design rules required to obtain such a response in a practical material.Comment: 5 pages, 6 figure

    Transition from Townsend to glow discharge: subcritical, mixed or supercritical

    Full text link
    The full parameter space of the transition from Townsend to glow discharge is investigated numerically in one space dimension in the classical model: with electrons and positive ions drifting in the local electric field, impact ionization by electrons (α\alpha process), secondary electron emission from the cathode (γ\gamma process) and space charge effects. We also perform a systematic analytical small current expansion about the Townsend limit up to third order in the total current that fits our numerical data very well. Depending on γ\gamma and system size pd, the transition from Townsend to glow discharge can show the textbook subcritical behavior, but for smaller values of pd, we also find supercritical or some intermediate ``mixed'' behavior. The analysis in particular lays the basis for understanding the complex spatio-temporal patterns in planar barrier discharge systems.Comment: 12 pages, 10 figures, submitted to Phys. Rev.

    Interface driven magnetoelectric effects in granular CrO2

    Full text link
    Antiferromagnetic and magnetoelectric Cr2O3-surfaces strongly affect the electronic properties in half metallic CrO2. We show the presence of a Cr2O3 surface layer on CrO3 grains by high-resolution transmission electron microscopy. The effect of these surface layers is demonstrated by measurements of the temperature variation of the magnetoelectric susceptibility. A major observation is a sign change at about 100 K followed by a monotonic rise as a function of temperature. These electric field induced moments in CrO3 are correlated with the magnetoelectric susceptibility of pure Cr2O3. This study indicates that it is important to take into account the magnetoelectric character of thin surface layers of Cr2O3 in granular CrO2 for better understanding the transport mechanism in this system. The observation of a finite magnetoelectric susceptibility near room temperature may find utility in device applications.Comment: Figure 1 with strongly reduced resolutio
    corecore