59 research outputs found

    Biogeographische, morphologische und molekularbiologische Untersuchungen zum Artstatus von Acalles temperei PĂ©ricart, 1987 und Kyklioacalles navieresi (Boheman, 1837)

    Get PDF
    Neben biogeographischen werden morphologische Argumente zusammengetragen, die fĂŒr eine Synonymisierung der Arten Acalles parvulus Boheman, 1837 = Acalles temperei PĂ©ricart, 1987 sprechen. Entlang eines Transekts zwischen dem Mont Pilat (Dep. Loire) und dem Mont Saint-Martin nördlich von Grenoble (Dep. IsĂšre) wird ĂŒber den Vergleich der Aedoeagi eine Cline sichtbar, die am Artstatus von Acalles temperei zweifeln lĂ€sst. BestĂ€tigung finden diese vergleichenden, phĂ€notypischen Untersuchungen durch erste molekulargenetische Untersuchungen. Danach scheint entweder eine Hybridisierungszone wahrscheinlich oder der Verdacht liegt nahe, dass Acalles parvulus und Acalles temperei eine einzige, geographisch strukturierte Art darstellen. Völlig anders liegen die molekularbiologischen Ergebnisse bei Kyklioacalles roboris (Curtis, 1834) und der erst kĂŒrzlich resynonymisierten Art Kyklioacalles navieresi (Boheman, 1837): Die DNA-Sequenzanalysen der mitochondrialen CO1- und 16S-Gene sowie des nukleĂ€ren 28S-Gens zeigen, dass Kyklioacalles navieresi und Kyklioacalles roboris zwei eigenstĂ€ndige, wenn auch eng verwandte Arten darstellen.New insights from biogeography, morphology and molecular biology: the species status of Acalles temperei PĂ©ricart, 1987 and Kyklioacalles navieresi (Boheman, 1837) (Curculionidae: Cryptorhynchinae); including 14 colored photographies, 2 plates, 1 diagram and 8 distribution maps. Biogeographical and morphological arguments are presented that suggest the following synonymization: Acalles parvulus Boheman, 1837 = Acalles temperei PĂ©ricart, 1987. Comparing the aedeagi along a transect from Mont Pilat (Dep. Loire) to Mont Saint-Martin North of Grenoble (Dep. IsĂšre), a cline becomes apparent that raises doubts about the species status of Acalles temperei. These results, obtained by comparative phenotypic examination, are corroborated in a preliminary set of molecular genetic analyses. The latter either hint the existence of a hybrid zone or indicate that Acalles parvulus and Acalles temperei constitute a single, geographically structured species. The molecular results for Kyklioacalles roboris (Curtis, 1834) and the recently resynonymized species Kyklioacalles navieresi (Boheman, 1837) are very different. DNA sequence analysis of the mitochondrial CO1 and 16S genes and of the nuclear 28S gene showed that Kyklioacalles navieresi and Kyklioacalles roboris likely represent two individual, but closely related species

    Barcoding and interspecific relationships of Macaronesian Weevils (Coleoptera: Curculionoidea)

    Get PDF
    In dieser integrativ-taxonomischen Studie werden fĂŒr 468 der 735 bisher beschriebenen lauri-makaronesischen Arten und Unterarten der RĂŒsselkĂ€fer (Curculionoidea) mitochondriale CO1-Barcodes in 1388 Proben vorgelegt. Ein Bayes‘scher Baum (elektronisches Supplement) gibt Einblicke in die Beziehungen innerhalb der Arten und Unterarten, ohne ein phylogenetisches Gesamtbild oberhalb der Gattungsebene anzustreben. Mit Ausnahme einiger weniger diskutierter FĂ€lle erlaubt der vorliegende Datensatz von DNA-Barcodes eine zuverlĂ€ssige Re-Identifizierung und bemerkenswerte Differenzierung von Arten und wird die Entdeckung und Beschreibung neuer RĂŒsselkĂ€fer-Arten - sowie deren (Re-) Synonymisierung - von den Kanaren, Madeira, und den Azoren beschleunigen. Nur in einem einzigen Fall, bei den eingewanderten, verwandten Arten Rhinoncus castor und R. bruchoides (Ceutorhynchinae) aus Madeira, ergab die molekulare (Re-)Identifizierung einen unauflösbaren Widerspruch zu unserer morphologischen Artbestimmung. In den meisten FĂ€llen wurden die morphologischen Bestimmungen zuvor durch Vergleiche mit dem Typenmaterial untermauert und sequenzierte Exemplare wurden in einer Referenzsammlung fĂŒr spĂ€tere Nachbestimmungen hinterlegt.In an integrative taxonomic approach, this study presents mitochondrial CO1 barcodes for 468 of the 735 so far described Lauri-Macaronesian weevil (Curculionoidea) species and subspecies in 1388 samples. A Bayesian tree (electronic supplement) provides insights into within-species relationships, without aiming at phylogenetic accuracy above genus level. With the exception of a few discussed cases, the present dataset of DNA barcodes allows a reliable re-identification and remarkable differentiation of species and will accelerate the discovery of new weevil species from the Canary, Madeira and Azores archipelagos. Only in a single case, the similar species Rhinoncus castor and R. bruchoides (Ceutorhynchinae) from Madeira, did the molecular (re)identification reveal an unresolvable contradiction with our morphological species identification. In many cases, morphological determinations were bolstered by comparisons with the type material. Sequenced specimens were mounted and deposited in a reference collection for later re-determinations

    Molecular and morphological systematics of soil-inhabiting Cryptorhynchinae of the genus Acallorneuma and the tribe Torneumatini (Coleoptera: Curculionidae), with description of two new species.

    Get PDF
    Ausgehend von ökologischen (idealtypischen) Einordnungen der flugunfĂ€higen, westpalĂ€arktischen Cryptorhynchinae werden molekulare und morphologische Ergebnisse zur monophyletischen RĂŒsselkĂ€fer-Gattung Acallorneuma Mainardi, 1906 und zu den subterrestrisch lebenden Arten des Tribus Torneumatini Bedel, 1884 vorgestellt. Ein Katalog und ein BilderschlĂŒssel zu den 8 validen Arten der Acallorneuma leitet eine Diskussion ĂŒber die begrenzten Möglichkeiten einer rein morphologischen Analyse der uniformen Arten des Genus Acallorneuma ein. In einem weiteren Schritt wird die morphologische Systematik mit der molekularen Rekonstruktion der VerwandtschaftsverhĂ€ltnisse anhand einer Region des mitochondrialen CO1 Gens verglichen. Im zweiten Teil der Arbeit wenden wir uns den gegenwĂ€rtig 71 bekannten, blinden, flĂŒgellosen und weitgehend kryptischen, tief im Erdreich lebenden Arten der Torneumatini zu. Die molekulare Analyse zeigt zwischen den Arten erhebliche p-Distanzen, macht aber auch deutlich, dass die Rekonstruktion der VerwandtschaftsverhĂ€ltnisse ganz entscheidend von der Anzahl der Arten und Proben abhĂ€ngig ist. Dennoch wurden einige taxonomische Änderungen vorgenommen: Torneuma s. str. mit der Typusart Torneuma caecum Wollaston, 1860 gibt es nur auf dem Madeira Archipel! Die Arten des Subgenus Paratyphloporus Solari, 1937 stat. nov. – und zwar nur die von den Kanarischen Inseln – gehören in das Subgenus Paratorneuma Roudier, 1956 stat. nov. FĂŒr alle anderen Arten aus dem mediterranen Gebiet und den östlichen kanarischen Inseln ist eine endgĂŒltige Klassifikation zur Zeit noch nicht möglich (incertae sedis), auch wenn erste Gruppen - eingeteilt vor allem nach der Innensackstruktur des Aedoeagus - hier bereits vorgestellt werden (siehe Anhang 2). Torneuma deplanatum deplanatum (Hampe, 1864) ist die Typusart des Subgenus Typhloporus und schließt einige, aber eben nicht alle mediterranen Arten mit einem konstant tiefen RĂŒsselkanal ein, der – das zeigen unsere vergleichenden Studien – offensichtlich mehrere Male in der Evolution ausgebildet wurde. Zwei neue Arten werden abschließenden beschrieben: Torneuma (s. str.) isambertoi StĂŒben spec. nov. von Madeira and Torneuma (s.l.) cadizensis StĂŒben spec. nov. aus dem SĂŒden Spaniens. FĂŒr beide Arten werden SchlĂŒssel mit den nĂ€chst verwandten Arten prĂ€sentiert.StichwörterAcallorneuma, Torneumatini, Torneuma, Bayesian analysis, Integrative Taxonomy, morphology, CO1, new species, taxonomic changes, Western Palaearctic, Spain, Portugal, Canary Islands, Madeira.Nomenklatorische Handlungenisambertoi StĂŒben, 2016 (Torneuma (s. str.)), spec. nov.cadizensis StĂŒben, 2016 (Torneuma (s.l.)), spec. nov.Starting from an ecological classification of the morphotypes of apterous western Palaearctic Cryptorhynchinae, molecular systematic and morphological results for the monophyletic weevil genus Acallorneuma Mainardi, 1906 and the tribe Torneumatini Bedel, 1884 are presented. Based on the mitochondrial CO1 barcoding region, we discuss the limits of comparative morphology in the uniform Acallorneuma species. A catalogue and a pictorial key of all 8 species of Acallorneuma are provided. In a second step we compare morphology-based systematics of the genus Acallorneuma with our molecular reconstruction. Finally, we focus on the related blind, equally wingless and uniform, currently 71 species of the tribe Torneumatini living deep in the soil. This overview of the present state of research shows that molecular intrageneric resolution is highly dependent on the number of sampled species, especially in those cases with particularly long edges in the dendrogram. But although Torneumatini sampling was not complete due to the elusiveness of these subterranean species, some taxonomic changes could still be implemented: Torneuma s. str. with the type species Torneuma caecum Wollaston, 1860 occurs only on the Madeira archipelago. The species of the subgenus Paratyphloporus Solari, 1937 stat. nov. - only from the western Canary Islands(!) - must be transferred into the genus subgenus Paratorneuma Roudier, 1956 stat. nov. For all other species of the Mediterranean area and the eastern Canary Islands, the systematic classification needs to be remade (incertae sedis, see also appendix 2). Torneuma deplanatum deplanatum (Hampe, 1864) is the type species of the subgenus Typhloporus that includes some, but not all Mediterranean species with a constantly deep and wide pectoral canal, which - as it now seems likely – was developed several times. Two new species are described: Torneuma (s. str.) isambertoi StĂŒben spec. nov. from Madeira and Torneuma (s.l.) cadizensis StĂŒben spec. nov. from the south of Spain. In both cases keys are given to differentiate from the closely related species.KeywordsAcallorneuma, Torneumatini, Torneuma, Bayesian analysis, Integrative Taxonomy, morphology, CO1, new species, taxonomic changes, Western Palaearctic, Spain, Portugal, Canary Islands, Madeira.Nomenclatural Actsisambertoi StĂŒben, 2016 (Torneuma (s. str.)), spec. nov.cadizensis StĂŒben, 2016 (Torneuma (s.l.)), spec. nov

    Molecular species identification of Central European ground beetles (Coleoptera: Carabidae) using nuclear rDNA expansion segments and DNA barcodes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The identification of vast numbers of unknown organisms using DNA sequences becomes more and more important in ecological and biodiversity studies. In this context, a fragment of the mitochondrial cytochrome <it>c </it>oxidase I (COI) gene has been proposed as standard DNA barcoding marker for the identification of organisms. Limitations of the COI barcoding approach can arise from its single-locus identification system, the effect of introgression events, incomplete lineage sorting, numts, heteroplasmy and maternal inheritance of intracellular endosymbionts. Consequently, the analysis of a supplementary nuclear marker system could be advantageous.</p> <p>Results</p> <p>We tested the effectiveness of the COI barcoding region and of three nuclear ribosomal expansion segments in discriminating ground beetles of Central Europe, a diverse and well-studied invertebrate taxon. As nuclear markers we determined the 18S rDNA: V4, 18S rDNA: V7 and 28S rDNA: D3 expansion segments for 344 specimens of 75 species. Seventy-three species (97%) of the analysed species could be accurately identified using COI, while the combined approach of all three nuclear markers provided resolution among 71 (95%) of the studied Carabidae.</p> <p>Conclusion</p> <p>Our results confirm that the analysed nuclear ribosomal expansion segments in combination constitute a valuable and efficient supplement for classical DNA barcoding to avoid potential pitfalls when only mitochondrial data are being used. We also demonstrate the high potential of COI barcodes for the identification of even closely related carabid species.</p

    The Global Genome Biodiversity Network (GGBN) Data Portal

    Get PDF
    The Author(s) 2013. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/ by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact [email protected] The attached file is the published pdf

    Trends in Biodiversity Research — A Bibliometric Assessment

    No full text
    Research on biodiversity has grown considerably during the last decades. The present study applies bibliometric methods to evaluate efforts in this field of study. We retrieved roughly 69,000 bibliographic records from the Web of Science database that matched the word biodiversity (and derivatives) in keywords, title or abstract. Article contributions and number of involved authors and journals increased exceptionally fast since the 1980s, when the term biodiversity was coined. But since the year 2008, a decelerated growth rate leads to an average rate of knowledge generation. Using the frequency of terms extracted from publication titles, we inferred that the community-level focus has increased in biodiversity studies, while molecular biodiversity is still not strongly represented. Climate-related topics are rapidly gaining importance in biodiversity research. The geographical imbalance between allocation of research efforts and distribution of biological diversity is apparent

    Kyklioacalles anthyllis

    No full text
    Kyklioacalles anthyllis 1 *. Pronotum with channel-like, connected, deep cavities (Fig. 23); 2 *. Base of elytra always with a light-coloured (beige) border (Fig. 23); 3 * Tarsi of forelegs (in both sexes) with short brushes of hairs; 4 *. Aedeagus/endophallus: Flank plates (fp) rounded on both sides of the central structure (Fig. 27). For the placement of the new Kyklioacalles species among the known 40 species of the Western Palaeartic, see the current pictorial key to the species of Kyklioacalles teter-barbarus group (StĂŒben 2004: 82). Kyklioacalles plantapilosus must be placed here via the series of digits 1-7 - 10-11 as the alternative to Kyklioacalles bupleuri StĂŒben, 2004. Description. Length. 3.95–6.40 mm (without rostrum). Head & Rostrum. Eyes rounded ovally towards front and acuminate towards underside of rostrum. Rostrum of males dark brown, reaching 3 / 4 length of pronotum, closely covered with scales between base and insertion of antenna and finely punctuated towards apex; rostrum of females clearly longer, slender, shiny and even more finely punctuated. The last, continuously broadened and trapezoidal funicles form a single unit wih the club (i.e., club not clearly separated from funicles). Pronotum. 1,19 x– 1,27 x as wide as long; widest at the end of the first fourth or first third of the pronotum; rounded laterally towards the fore-margin more strongly than towards the base; with a channel-like depression at the sides directly behind the fore-margin. In lateral view contour-line of pronotum and of the elytra forms a uniform bend; disc of pronotum weakly arched, flat behind fore-margin, without a channel on the disc or with humps at the sides. The integument consists of dirty white, beige and—often dominating—black spots of tiny scales, which completely disguise the integument. Black spots of scales are always visible in front of the base and behind the fore-margin (but the whole pronotum can also be black); there is sometimes a cross of beige scales on the disc of pronotum. Pronotum with numerous fine punctures and with a single tiny, raised and very short bristle inside the dimple; the space between these dimples always covered with shiny and overlapping scales. Elytra. Cylindrical; 1,20 x– 1,42 x as long as wide; widest in front of the middle, at the end of the second fifth of the elytra; with sides parting towards the base in the middle, only slightly rounded or with more parallel sides (without "shoulders”), short-ovally rounded towards the apex. Contour-line of elytra flatter behind the base in lateral view, the contour-line of the elytral slope forming an arc towards the apex. The shiny and predominantly black integument with its beige spots consists of tiny, overlapping scales so that the integument is not visible. The beige and scattered spots often contrast strongly and give the elytra a pied appearance. Always with a bright spot directly in front of the middle on the 3 rd interval (excluding the suture stripe); the most extensive beige spots are between the apex and the middle of the elytra. Striae on the disc and at the sides of elytra as wide as intervals (they look like small channels, if they are shrouded by scales) and their circular punctures not deep; their distances range from the half the diameter of the punctures themselves to the full diameter. Intervals are only on the elytral slope (and in front of the apex) and are wider than striae, flat, and only a little bit arched behind the base, here - on the 2 nd and 4 th interval - with flat humps; all intervals with some tiny, raised and very short bristles (looking like powder). Legs. Short; the marginal front femora reach fore-margin of the eyes, the hind femora clearly ending in front of the elytral apex. They are covered with predominantly beige and dark brown scales, disguising the integument. The very long brushes of hairs under the tarsus of forelegs are characteristic and remarkable for the male of this species (cf. ‘ derivatio nominis ’; female with normal, short brushes of hairs): Ve n te r. 2 nd sternite a little bit shorter than 1 st sternite and longer than sternite 3 and 4 altogether. Female genitalia. See Fig. 31. Aedeagus. See Fig. 25. Etymology. The species name refers to the brushes of hairs under the tarsus of forelegs (male). Ecology. The first specimen of Kyklioacalles plantapilosus, a male, was discovered by W. Starke (Germany: Warendorf) in 2001. He found it on the south-facing slope of the Sierra Nevada (Spain: Prov. AlmerĂ­a) near the small village of BayĂĄrcal. Together with L. Behne (MĂŒncheberg, 2005) and J.J. Astrin (Bonn, 2007), we again sifted this species with some other Cryptorhynchinae under trees and bushes above BayĂĄrcal at an altitude of 1300–1500 m. However, a correlation to a host-plant could not be observed at first. Siftings under Euphorbia characias produced significantly more specimens (Fig. 30). We suppose that this Euphorbiaceae is the host plant of Kyklioacalles plantapilosus —just like Euphorbia nicaeensis from Sierra AlmadĂ©n (South Spain)is demonstrably a host plant of the sister taxon Kyklioacalles bupleuri (see biology of K. almadensis syn. nov., StĂŒben 2004: 81). Distribution. This species is so far only known from Sierra Nevada, southern Spain (Fig. 30).Published as part of StĂŒben, Peter E. & Astrin, Jonas J., 2010, Molecular phylogeny of the weevil genus Kyklioacalles StĂŒben, with descriptions of a new subgenus Glaberacalles and two new species (Curculionidae: Cryptorhynchinae), pp. 28-52 in Zootaxa 2662 on pages 40-43, DOI: 10.5281/zenodo.27627
    • 

    corecore