5 research outputs found

    Immune Cell Composition in Human Non-small Cell Lung Cancer

    Get PDF
    Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death in the world. Immunological analysis of the tumor microenvironment (immunoscore) shows great promise for improved prognosis and prediction of response to immunotherapy. However, the exact immune cell composition in NSCLC remains unclear. Here, we used flow cytometry to characterize the immune infiltrate in NSCLC tumors, non-cancerous lung tissue, regional lymph node, and blood. The cellular identity of >95% of all CD45+ immune cells was determined. Thirteen distinct immune cell types were identified in NSCLC tumors. T cells dominated the lung cancer landscape (on average 47% of all CD45+ immune cells). CD4+ T cells were the most abundant T cell population (26%), closely followed by CD8+ T cells (22%). Double negative CD4−CD8− T cells represented a small fraction (1.4%). CD19+ B cells were the second most common immune cell type in NSCLC tumors (16%), and four different B cell sub-populations were identified. Macrophages and natural killer (NK) cells composed 4.7 and 4.5% of the immune cell infiltrate, respectively. Three types of dendritic cells (DCs) were identified (plasmacytoid DCs, CD1c+ DCs, and CD141+ DCs) which together represented 2.1% of all immune cells. Among granulocytes, neutrophils were frequent (8.6%) with a high patient-to-patient variability, while mast cells (1.4%), basophils (0.4%), and eosinophils (0.3%) were less common. Across the cohort of patients, only B cells showed a significantly higher representation in NSCLC tumors compared to the distal lung. In contrast, the percentages of macrophages and NK cells were lower in tumors than in non-cancerous lung tissue. Furthermore, the fraction of macrophages with high HLA-DR expression levels was higher in NSCLC tumors relative to distal lung tissue. To make the method readily accessible, antibody panels and flow cytometry gating strategy used to identify the various immune cells are described in detail. This work should represent a useful resource for the immunomonitoring of patients with NSCLC

    MULTI-STAINING REGISTRATION OF LARGE HISTOLOGY IMAGES

    No full text
    International audienceQuantifying T cells inside tumorous tissue can help identifying immune profiles in order to improve prognosis and possibly develop immunotherapy. However, to identify T cells and cancerous cells in two consecutive staining slides is challenging: the tissue preparation introduces the problem of alignment on large size images with poor visual common information. This work presents a framework for aligning whole slide images by extracting their common information and performing non-rigid registration based on B-splines to solve this problem. Experiments show good results with a mean error of 20.34 ± 12.20”m on our images even if some developments are still needed. This preliminary work is publicly available as part of our open-source Icy platform

    The Immune Landscape of Human Primary Lung Tumors Is Th2 Skewed

    No full text
    Tumor-specific T helper (Th) cells have a central role in the immune response against cancer. However, there exist distinct Th cell subsets with very different and antagonizing properties. Some Th subsets such as Th1 protect against cancer, while others (Th2, T regulatory/Treg) are considered detrimental or of unknown significance (T follicular helper/Tfh, Th17). The Th composition of human solid tumors remains poorly characterized. Therefore, we established a four-color multiplex chromogenic immunohistochemical assay for detection of Th1, Th2, Th17, Tfh and Treg cells in human tumor sections. The method was used to analyze resected primary lung tumors from 11 patients with non-small cell lung cancer (NSCLC). Four microanatomical regions were investigated: tumor epithelium, tumor stroma, peritumoral tertiary lymphoid structures (TLS) and non-cancerous distal lung tissue. In tumor epithelium and stroma, most CD4 + T cells identified had either a Th2 (GATA-3 + CD3 + CD8 - ) or Treg (FOXP3 + CD3 + CD8 - ) phenotype, whereas only low numbers of Th1, Th17, and Tfh cells were observed. Similarly, Th2 was the most abundant Th subset in TLS, followed by Treg cells. In sharp contrast, Th1 was the most frequently detected Th subset in non-cancerous lung tissue from the same patients. A higher Th1:Th2 ratio in tumor stroma was found to be associated with increased numbers of intratumoral CD8 + T cells. The predominance of Th2 and Treg cells in both tumor stroma and tumor epithelium was consistent for all the 11 patients investigated. We conclude that human primary NSCLC tumors are Th2-skewed and contain numerous Treg cells. If human tumors are Th2-skewed, as our data in NSCLC suggest, reprogramming the type of immune response from a detrimental Th2 to a beneficial Th1 may be critical to increase the response rate of immunotherapy

    Antibody combinations for optimized staining of macrophages in human lung tumours

    No full text
    The analysis of tumour‐associated macrophages (TAMs) has a high potential to predict cancer recurrence and response to immunotherapy. However, the heterogeneity of TAMs poses a challenge for quantitative and qualitative measurements. Here, we critically evaluated by immunohistochemistry and flow cytometry two commonly used pan‐macrophage markers (CD14 and CD68) as well as some suggested markers for tumour‐promoting M2 macrophages (CD163, CD204, CD206 and CD209) in human non–small cell lung cancer (NSCLC). Tumour, non‐cancerous lung tissue and blood were investigated. For immunohistochemistry, CD68 was confirmed to be a useful pan‐macrophage marker although careful selection of antibody was found to be critical. The widely used anti‐CD68 antibody clone KP‐1 stains both macrophages and neutrophils, which is problematic for TAM quantification because lung tumours contain many neutrophils. For TAM counting in tumour sections, we recommend combined labelling of CD68 with a cell membrane marker such as CD14, CD163 or CD206. In flow cytometry, the commonly used combination of CD14 and HLA‐DR was found to not be optimal because some TAMs do not express CD14. Instead, combined staining of CD68 and HLA‐DR is preferable to gate all TAMs. Concerning macrophage phenotypic markers, the scavenger receptor CD163 was found to be expressed by a substantial fraction (50%‐86%) of TAMs with a large patient‐to‐patient variation. Approximately 50% of TAMs were positive for CD206. Surprisingly, there was no clear overlap between CD163 and CD206 positivity, and three distinct TAM sub‐populations were identified in NSCLC tumours: CD163+CD206+, CD163+CD206− and CD163−CD206−. This work should help develop macrophage‐based prognostic tools for cancer

    A gene signature identifying CIN3 regression and cervical cancer survival

    Get PDF
    The purpose of this study was to establish a gene signature that may predict CIN3 regression and that may aid in selecting patients who may safely refrain from conization. Oncomine mRNA data including 398 immune-related genes from 21 lesions with confirmed regression and 28 with persistent CIN3 were compared. L1000 mRNA data from a cervical cancer cohort was available for validation (n = 239). Transcriptomic analyses identified TDO2 (p = 0.004), CCL5 (p < 0.001), CCL3 (p = 0.04), CD38 (p = 0.02), and PRF1 (p = 0.005) as upregulated, and LCK downregulated (p = 0.01) in CIN3 regression as compared to persistent CIN3 lesions. From these, a gene signature predicting CIN3 regression with a sensitivity of 91% (AUC = 0.85) was established. Transcriptomic analyses revealed proliferation as significantly linked to persistent CIN3. Within the cancer cohort, high regression signature score associated with immune activation by Gene Set enrichment Analyses (GSEA) and immune cell infiltration by histopathological evaluation (p < 0.001). Low signature score was associated with poor survival (p = 0.007) and large tumors (p = 0.01). In conclusion, the proposed six-gene signature predicts CIN regression and favorable cervical cancer prognosis and points to common drivers in precursors and cervical cancer lesions
    corecore