145 research outputs found

    Temperature dependence of shear viscosity of SU(3)SU(3)--gluodynamics within lattice simulation

    Full text link
    In this paper we study the shear viscosity temperature dependence of SU(3)SU(3)--gluodynamics within lattice simulation. To do so, we measure the correlation functions of energy-momentum tensor in the range of temperatures T/Tc[0.9,1.5]T/T_c\in [0.9, 1.5]. To extract the values of shear viscosity we used two approaches. The first one is to fit the lattice data with some physically motivated ansatz for the spectral function with unknown parameters and then determine shear viscosity. The second approach is to apply the Backus-Gilbert method which allows to extract shear viscosity from the lattice data nonparametrically. The results obtained within both approaches agree with each other. Our results allow us to conclude that within the temperature range T/Tc[0.9,1.5]T/T_c \in [0.9, 1.5] SU(3)--gluodynamics reveals the properties of a strongly interacting system, which cannot be described perturbatively, and has the ratio η/s\eta/s close to the value 1/4π{1}/{4\pi} in N=4N = 4 Supersymmetric Yang-Mills theory.Comment: Typos in references are corrected and the acknowledgements are modifie

    Secularly growing loop corrections in strong electric fields

    Get PDF
    We calculate one--loop corrections to the vertexes and propagators of photons and charged particles in the strong electric field backgrounds. We use the Schwinger--Keldysh diagrammatic technique. We observe that photon's Keldysh propagator receives growing with time infrared contribution. As the result, loop corrections are not suppressed in comparison with tree--level contribution. This effect substantially changes the standard picture of the pair production. To sum up leading IR corrections from all loops we consider the infrared limit of the Dyson--Schwinger equations and reduce them to a single kinetic equation.Comment: 16 pages, no figures; Minor correction

    Many-body effects in graphene beyond the Dirac model with Coulomb interaction

    Get PDF
    This paper is devoted to development of perturbation theory for studying the properties of graphene sheet of finite size, at nonzero temperature and chemical potential. The perturbation theory is based on the tight-binding Hamiltonian and arbitrary interaction potential between electrons, which is considered as a perturbation. One-loop corrections to the electron propagator and to the interaction potential at nonzero temperature and chemical potential are calculated. One-loop formulas for the energy spectrum of electrons in graphene, for the renormalized Fermi velocity and also for the dielectric permittivity are derived.Comment: 11 pages, 11 figure

    Rate of cluster decomposition via Fermat-Steiner point

    Get PDF
    In quantum field theory with a mass gap correlation function between two spatially separated operators decays exponentially with the distance. This fundamental result immediately implies an exponential suppression of all higher point correlation functions, but the predicted exponent is not optimal. We argue that in a general quantum field theory the optimal suppression of a three-point function is determined by total distance from the operator locations to the Fermat-Steiner point. Similarly, for the higher point functions we conjecture the optimal exponent is determined by the solution of the Euclidean Steiner tree problem. We discuss how our results constrain operator spreading in relativistic theories.Comment: 16 pages; journal version, appendix A adde

    Study of shear viscosity of SU (2)-gluodynamics within lattice simulation

    Full text link
    This paper is devoted to the study of two-point correlation function of the energy-momentum tensor T_{12}T_{12} for SU(2)-gluodynamics within lattice simulation of QCD. Using multilevel algorithm we carried out the measurement of the correlation function at the temperature T/T_c = 1.2. It is shown that lattice data can be described by spectral functions which interpolate between hydrodynamics at low frequencies and asymptotic freedom at high frequencies. The results of the study of spectral functions allowed us to estimate the ratio of shear viscosity to the entropy density {\eta}/s = 0.134 +- 0.057.Comment: 7 pages, 3 figure

    Rate of Cluster Decomposition via Fermat-Steiner Point

    Get PDF
    In quantum field theory with a mass gap correlation function between two spatially separated operators decays exponentially with the distance. This fundamental result immediately implies an exponential suppression of all higher point correlation functions, but the predicted exponent is not optimal. We argue that in a general quantum field theory the optimal suppression of a three-point function is determined by total distance from the operator locations to the Fermat-Steiner point. Similarly, for the higher point functions we conjecture the optimal exponent is determined by the solution of the Euclidean Steiner tree problem. We discuss how our results constrain operator spreading in relativistic theories

    Quantum Monte Carlo study of static potential in graphene

    Get PDF
    In this paper the interaction potential between static charges in suspended graphene is studied within the quantum Monte Carlo approach. We calculated the dielectric permittivity of suspended graphene for the set of temperatures and extrapolated our results to zero temperature. The dielectric permittivity at zero temperature has the following properties. At zero distance ϵ=2.24±0.02\epsilon=2.24\pm0.02. Then it rises and at a large distance the dielectric permittivity reaches the plateau ϵ4.20±0.66\epsilon\simeq4.20\pm0.66. The results obtained in this paper allow to draw a conclusion that full account of many-body effects in the dielectric permittivity of suspended graphene gives ϵ\epsilon very close to the one-loop results. Contrary to the one-loop result, the two-loop prediction for the dielectric permittivity deviates from our result. So, one can expect large higher order corrections to the two-loop prediction for the dielectric permittivity of suspended graphene.Comment: 6 pages, 2 figure

    Time Evolution of Uniform Sequential Circuits

    Full text link
    Simulating time evolution of generic quantum many-body systems using classical numerical approaches has an exponentially growing cost either with evolution time or with the system size. In this work, we present a polynomially scaling hybrid quantum-classical algorithm for time evolving a one-dimensional uniform system in the thermodynamic limit. This algorithm uses a layered uniform sequential quantum circuit as a variational ansatz to represent infinite translation-invariant quantum states. We show numerically that this ansatz requires a number of parameters polynomial in the simulation time for a given accuracy. Furthermore, this favourable scaling of the ansatz is maintained during our variational evolution algorithm. All steps of the hybrid optimization are designed with near-term digital quantum computers in mind. After benchmarking the evolution algorithm on a classical computer, we demonstrate the measurement of observables of this uniform state using a finite number of qubits on a cloud-based quantum processing unit. With more efficient tensor contraction schemes, this algorithm may also offer improvements as a classical numerical algorithm.Comment: 19 pages, 14 figure
    corecore