1,393 research outputs found

    On the crosscorrelation between Gravitational Wave Detectors for detecting association with Gamma Ray Bursts

    Get PDF
    Crosscorrelation of the outputs of two Gravitational Wave (GW) detectors has recently been proposed [1] as a method for detecting statistical association between GWs and Gamma Ray Bursts (GRBs). Unfortunately, the method can be effectively used only in the case of stationary noise. In this work a different crosscorrelation algorithm is presented, which may effectively be applied also in non-stationary conditions for the cumulative analysis of a large number of GRBs. The value of the crosscorrelation at zero delay, which is the only one expected to be correlated to any astrophysical signal, is compared with the distribution of crosscorrelation of the same data for all non-zero delays within the integration time interval. This background distribution is gaussian, so the statistical significance of an experimentally observed excess would be well-defined. Computer simulations using real noise data of the cryogenic GW detectors Explorer and Nautilus with superimposed delta-like signals were performed, to test the effectiveness of the method, and theoretical estimates of its sensitivity compared to the results of the simulation. The effectiveness of the proposed algorithm is compared to that of other cumulative techniques, finding that the algorithm is particularly effective in the case of non-gaussian noise and of a large (100-1000s) and unpredictable delay between GWs and GRBs.Comment: 7 pages, 4 figures, 1 table. Submitted by Phys. Rev.

    Validating delta-filters for resonant bar detectors of improved bandwidth foreseeing the future coincidence with interferometers

    Full text link
    The classical delta filters used in the current resonant bar experiments for detecting GW bursts are viable when the bandwidth of resonant bars is few Hz. In that case, the incoming GW burst is likely to be viewed as an impulsive signal in a very narrow frequency window. After making improvements in the read-out with new transducers and high sensitivity dc-SQUID, the Explorer-Nautilus have improved the bandwidth (∌20\sim 20 Hz) at the sensitivity level of 10−20/Hz10^{-20}/\sqrt{Hz}. Thus, it is necessary to reassess this assumption of delta-like signals while building filters in the resonant bars as the filtered output crucially depends on the shape of the waveform. This is presented with an example of GW signals -- stellar quasi-normal modes, by estimating the loss in SNR and the error in the timing, when the GW signal is filtered with the delta filter as compared to the optimal filter.Comment: 7 pages, presented in Amaldi6, accepted for publication in Journal of Physics: Conference Serie

    Search for Periodic Gravitational Wave Sources with the Explorer Detector

    Get PDF
    We have developped a procedure for the search of periodic signals in the data of gravitational wave detectors. We report here the analysis of one year of data from the resonant detector Explorer, searching for pulsars located in the Galactic Center (GC). No signals with amplitude greater than hˉ=2.9 10−24\bar{h}= 2.9~10^{-24}, in the range 921.32-921.38 Hz, were observed using data collected over a time period of 95.7 days, for a source located at α=17.70±0.01\alpha=17.70 \pm 0.01 hours and ÎŽ=−29.00±0.05\delta=-29.00 \pm 0.05 degrees. Our procedure can be extended for any assumed position in the sky and for a more general all-sky search, even with a frequency correction at the source due to the spin-down and Doppler effects.Comment: One zipped file (Latex+eps figures). 33 pages, 14 figures. This and related material also at http://grwav3.roma1.infn.it

    All-sky upper limit for gravitational radiation from spinning neutron stars

    Full text link
    We present results of the all-sky search for gravitational-wave signals from spinning neutron stars in the data of the EXPLORER resonant bar detector. Our data analysis technique was based on the maximum likelihood detection method. We briefly describe the theoretical methods that we used in our search. The main result of our analysis is an upper limit of 2×10−23{\bf 2\times10^{-23}} for the dimensionless amplitude of the continuous gravitational-wave signals coming from any direction in the sky and in the narrow frequency band from 921.00 Hz to 921.76 Hz.Comment: 12 pages, 4 figures, submitted to Proceedings of 7th Gravitational Wave Data Analysis Workshop, December 17-19, 2002, Kyoto, Japa

    Search for correlation between GRB's detected by BeppoSAX and gravitational wave detectors EXPLORER and NAUTILUS

    Get PDF
    Data obtained during five months of 2001 with the gravitational wave (GW) detectors EXPLORER and NAUTILUS were studied in correlation with the gamma ray burst data (GRB) obtained with the BeppoSAX satellite. During this period BeppoSAX was the only GRB satellite in operation, while EXPLORER and NAUTILUS were the only GW detectors in operation. No correlation between the GW data and the GRB bursts was found. The analysis, performed over 47 GRB's, excludes the presence of signals of amplitude h >=1.2 * 10^{-18}, with 95 % probability, if we allow a time delay between GW bursts and GRB within +-400 s, and h >= 6.5 * 10^{-19}, if the time delay is within +- 5 s. The result is also provided in form of scaled likelihood for unbiased interpretation and easier use for further analysis.Comment: 14 pages, 7 figures. Latex file, compiled with cernik.cls (provided in the package

    Data analysis of gravitational-wave signals from spinning neutron stars. IV. An all-sky search

    Get PDF
    We develop a set of data analysis tools for a realistic all-sky search for continuous gravitational-wave signals. The methods that we present apply to data from both the resonant bar detectors that are currently in operation and the laser interferometric detectors that are in the final stages of construction and commissioning. We show that with our techniques we shall be able to perform an all-sky 2-day long coherent search of the narrow-band data from the resonant bar EXPLORER with no loss of signals with the dimensionless amplitude greater than 2.8×10−232.8\times10^{-23}.Comment: REVTeX, 26 pages, 1 figure, submitted to Phys. Rev.

    Study of the coincidences between the gravitational wave detectors EXPLORER and NAUTILUS in 2001

    Get PDF
    We report the result from a search for bursts of gravitational waves using data collected by the cryogenic resonant detectors EXPLORER and NAUTILUS during the year 2001, for a total measuring time of 90 days. With these data we repeated the coincidence search performed on the 1998 data (which showed a small coincidence excess) applying data analysis algorithms based on known physical characteristics of the detectors. With the 2001 data a new interesting coincidence excess is found when the detectors are favorably oriented with respect to the Galactic Disk

    A new data analysis framework for the search of continuous gravitational wave signals

    Full text link
    Continuous gravitational wave signals, like those expected by asymmetric spinning neutron stars, are among the most promising targets for LIGO and Virgo detectors. The development of fast and robust data analysis methods is crucial to increase the chances of a detection. We have developed a new and flexible general data analysis framework for the search of this kind of signals, which allows to reduce the computational cost of the analysis by about two orders of magnitude with respect to current procedures. This can correspond, at fixed computing cost, to a sensitivity gain of up to 10%-20%, depending on the search parameter space. Some possible applications are discussed, with a particular focus on a directed search for sources in the Galactic center. Validation through the injection of artificial signals in the data of Advanced LIGO first observational science run is also shown.Comment: 21 pages, 8 figure

    An improved algorithm for narrow-band searches of continuous gravitational waves

    Full text link
    Continuous gravitational waves signals, emitted by asymmetric spinning neutron stars, are among the main targets of current detectors like Advanced LIGO and Virgo. In the case of sources, like pulsars, which rotational parameters are measured through electromagnetic observations, typical searches assume that the gravitational wave frequency is at a given known fixed ratio with respect to the star rotational frequency. For instance, for a neutron star rotating around one of its principal axis of inertia the gravitational signal frequency would be exactly two times the rotational frequency of the star. It is possible, however, that this assumption is wrong. This is why search algorithms able to take into account a possible small mismatch between the gravitational waves frequency and the frequency inferred from electromagnetic observations have been developed. In this paper we present an improved pipeline to perform such narrow-band searches for continuous gravitational waves from neutron stars, about three orders of magnitude faster than previous implementations. The algorithm that we have developed is based on the {\it 5-vectors} framework and is able to perform a fully coherent search over a frequency band of width O\mathcal{O}(Hertz) and for hundreds of spin-down values running a few hours on a standard workstation. This new algorithm opens the possibility of long coherence time searches for objects which rotational parameters are highly uncertain.Comment: 19 pages, 8 figures, 6 tables, submitted to CQ

    Aperture synthesis for gravitational-wave data analysis: Deterministic Sources

    Get PDF
    Gravitational wave detectors now under construction are sensitive to the phase of the incident gravitational waves. Correspondingly, the signals from the different detectors can be combined, in the analysis, to simulate a single detector of greater amplitude and directional sensitivity: in short, aperture synthesis. Here we consider the problem of aperture synthesis in the special case of a search for a source whose waveform is known in detail: \textit{e.g.,} compact binary inspiral. We derive the likelihood function for joint output of several detectors as a function of the parameters that describe the signal and find the optimal matched filter for the detection of the known signal. Our results allow for the presence of noise that is correlated between the several detectors. While their derivation is specialized to the case of Gaussian noise we show that the results obtained are, in fact, appropriate in a well-defined, information-theoretic sense even when the noise is non-Gaussian in character. The analysis described here stands in distinction to ``coincidence analyses'', wherein the data from each of several detectors is studied in isolation to produce a list of candidate events, which are then compared to search for coincidences that might indicate common origin in a gravitational wave signal. We compare these two analyses --- optimal filtering and coincidence --- in a series of numerical examples, showing that the optimal filtering analysis always yields a greater detection efficiency for given false alarm rate, even when the detector noise is strongly non-Gaussian.Comment: 39 pages, 4 figures, submitted to Phys. Rev.
    • 

    corecore