146 research outputs found
Color Transparency versus Quantum Coherence in Electroproduction of Vector Mesons off Nuclei
So far no theoretical tool for the comprehensive description of exclusive
electroproduction of vector mesons off nuclei at medium energies has been
developed. We suggest a light-cone QCD formalism which is valid at any energy
and incorporates formation effects (color transparency), the coherence length
and the gluon shadowing. At medium energies color transparency (CT) and the
onset of coherence length (CL) effects are not easily separated. Indeed,
although nuclear transparency measured by the HERMES experiment rises with Q^2,
it agrees with predictions of the vector dominance model (VDM) without any CT
effects. Our new results and observations are: (i) the good agreement with the
VDM found earlier is accidental and related to the specific correlation between
Q^2 and CL for HERMES kinematics; (ii) CT effects are much larger than have
been estimated earlier within the two channel approximation. They are even
stronger at low than at high energies and can be easily identified by HERMES or
at JLab; (iii) gluon shadowing which is important at high energies is
calculated and included; (iv) our parameter-free calculations explain well
available data for variation of nuclear transparency with virtuality and energy
of the photon; (v) predictions for electroproduction of \rho and \phi are
provided for future measurements at HERMES and JLab.Comment: Latex 57 pages and 17 figure
Partial Wave Analysis of
BES data on are presented. The
contribution peaks strongly near threshold. It is fitted with a
broad resonance with mass MeV, width MeV. A broad resonance peaking at 2020 MeV is also required
with width MeV. There is further evidence for a component
peaking at 2.55 GeV. The non- contribution is close to phase
space; it peaks at 2.6 GeV and is very different from .Comment: 15 pages, 6 figures, 1 table, Submitted to PL
A study of charged kappa in
Based on events collected by BESII, the decay
is studied. In the invariant mass
spectrum recoiling against the charged , the charged
particle is found as a low mass enhancement. If a Breit-Wigner function of
constant width is used to parameterize the kappa, its pole locates at MeV/. Also in this channel,
the decay is observed for the first time.
Its branching ratio is .Comment: 14 pages, 4 figure
Erratum: All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run (Physical Review D - Particles, Fields, Gravitation and Cosmology - 2010: 81(10) 102001-1-102001-20)
This paper was published online on 5 May 2010 with an omission in the Collaboration author list. S. Dwyer has been added as of 12 April 2012. The Collaboration author list is incorrect in the printed version of the journalJ. Abadie... D. J. Hosken... J. Munch... D. J. Ottaway... P. J. Veitch...et al. (LIGO Scientific Collaboration, VIRGO Collaboration
GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼ 3.4 M o
On 2019 April 25, the LIGO Livingston detector observed a compact binary coalescence with signal-to-noise ratio 12.9. The Virgo detector was also taking data that did not contribute to detection due to a low signal-to-noise ratio, but were used for subsequent parameter estimation. The 90% credible intervals for the component masses range from to if we restrict the dimensionless component spin magnitudes to be smaller than 0.05). These mass parameters are consistent with the individual binary components being neutron stars. However, both the source-frame chirp mass and the total mass of this system are significantly larger than those of any other known binary neutron star (BNS) system. The possibility that one or both binary components of the system are black holes cannot be ruled out from gravitational-wave data. We discuss possible origins of the system based on its inconsistency with the known Galactic BNS population. Under the assumption that the signal was produced by a BNS coalescence, the local rate of neutron star mergers is updated to 250-2810
Study of J/Psi decays into eta Kstar Kstar-bar
We report the first observation of \mPJpsi \to \mPeta\mPKst\mAPKst decay in
a \mPJpsi sample of 58 million events collected with the BESII detector. The
branching fraction is determined to be . The selected signal event sample is further used to search for the
\mPY resonance through \mPJpsi \to \mPeta \mPY, \mPY\to\mPKst\mAPKst. No
evidence of a signal is seen. An upper limit of \mathrm{Br}(\mPJpsi \to \mPeta
\mPY)\cdot\mathrm{Br}(\mPY\to\mPKst\mAPKst) < 2.52\times 10^{-4} is set at the
90% confidence level.Comment: 11 pages, 4 figure
Evidence for kappa Meson Production in J/psi -> bar{K}^*(892)^0K^+pi^- Process
Based on 58 million BESII J/psi events, the bar{K}^*(892)^0K^+pi^- channel in
K^+K^-pi^+pi^- is studied. A clear low mass enhancement in the invariant mass
spectrum of K^+pi^- is observed. The low mass enhancement does not come from
background of other J/psi decay channels, nor from phase space. Two independent
partial wave analyses have been performed. Both analyses favor that the low
mass enhancement is the kappa, an isospinor scalar resonant state. The average
mass and width of the kappa in the two analyses are 878 +- 23^{+64}_{-55}
MeV/c^2 and 499 +- 52^{+55}_{-87} MeV/c^2, respectively, corresponding to a
pole at (841 +- 30^{+81}_{-73}) - i(309 +- 45^{+48}_{-72}) MeV/c^2.Comment: 17 pages, 5 figure
All-sky search for long-duration gravitational wave transients with initial LIGO
We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society
All-sky search for long-duration gravitational wave transients with initial LIGO
We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society
Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model
We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society
- …