8 research outputs found

    Atom-Resonant Heralded Single Photons by Interaction-Free Measurement

    Full text link
    We demonstrate the generation of rubidium-resonant heralded single photons for quantum memories. Photon pairs are created by cavity-enhanced down-conversion and narrowed in bandwidth to 7 MHz with a novel atom-based filter operating by "interaction-free measurement" principles. At least 94% of the heralded photons are atom-resonant as demonstrated by a direct absorption measurement with rubidium vapor. A heralded auto-correlation measurement shows gc(2)(0)=0.040±0.012g_c^{(2)}(0)=0.040 \pm 0.012, i.e., suppression of multi-photon contributions by a factor of 25 relative to a coherent state. The generated heralded photons can readily be used in quantum memories and quantum networks.Comment: 5 pages, 4 figure

    A macroscopic quantum state analysed particle by particle

    Get PDF
    Explaining how microscopic entities collectively produce macroscopic phenomena is a fundamental goal of many-body physics. Theory predicts that large-scale entanglement is responsible for exotic macroscopic phenomena, but observation of entangled particles in naturally occurring systems is extremely challenging. Synthetic quantum systems made of atoms in optical lattices have been con- structed with the goal of observing macroscopic quantum phenomena with single-atom resolution. Serious challenges remain in producing and detecting long-range quantum correlations in these systems, however. Here we exploit the strengths of photonic technology, including high coherence and efficient single-particle detection, to study the predicted large-scale entanglement underlying the macroscopic quantum phenomenon of polarization squeezing. We generate a polarization-squeezed beam, extract photon pairs at random, and make a tomographic reconstruction of their joint quantum state. We present experimental evidence showing that all photons arriving within the squeezing coherence time are entangled, that entanglement monogamy dilutes entanglement with increasing photon density and that, counterintuitively, increased squeezing can reduce bipartite entanglement. The results provide direct evidence for entanglement of macroscopic numbers of particles and introduce micro-analysis to the study of macroscopic quantum phenomena

    Macroscopic Quantum State Analyzed Particle by Particle

    No full text
    Macroscopic quantum phenomena, e.g., superconductivity and squeezing, are believed to result from entanglement of macroscopic numbers of particles. We report the first direct study of this kind of entanglement: we use discrete quantum tomography to reconstruct the joint quantum state of photon pairs extracted from polarization-squeezed light. Our observations confirm several predictions from spinsqueezing theory [Beduini et al., Phys. Rev. Lett. 111, 143601 (2013)], including strong entanglement and entanglement of all photon pairs within the squeezing coherence time. This photon-by-photon analysis may give insight into other macroscopic many-body systems, e.g., photon Bose-Einstein condensates.Peer Reviewe
    corecore