11 research outputs found

    The completion of the Mammalian Gene Collection (MGC)

    Get PDF
    Since its start, the Mammalian Gene Collection (MGC) has sought to provide at least one full-protein-coding sequence cDNA clone for every human and mouse gene with a RefSeq transcript, and at least 6200 rat genes. The MGC cloning effort initially relied on random expressed sequence tag screening of cDNA libraries. Here, we summarize our recent progress using directed RT-PCR cloning and DNA synthesis. The MGC now contains clones with the entire protein-coding sequence for 92% of human and 89% of mouse genes with curated RefSeq (NM-accession) transcripts, and for 97% of human and 96% of mouse genes with curated RefSeq transcripts that have one or more PubMed publications, in addition to clones for more than 6300 rat genes. These high-quality MGC clones and their sequences are accessible without restriction to researchers worldwide

    Locus Reference Genomic: reference sequences for the reporting of clinically relevant sequence variants.

    Full text link
    Locus Reference Genomic (LRG; http://www.lrg-sequence.org/) records contain internationally recognized stable reference sequences designed specifically for reporting clinically relevant sequence variants. Each LRG is contained within a single file consisting of a stable 'fixed' section and a regularly updated 'updatable' section. The fixed section contains stable genomic DNA sequence for a genomic region, essential transcripts and proteins for variant reporting and an exon numbering system. The updatable section contains mapping information, annotation of all transcripts and overlapping genes in the region and legacy exon and amino acid numbering systems. LRGs provide a stable framework that is vital for reporting variants, according to Human Genome Variation Society (HGVS) conventions, in genomic DNA, transcript or protein coordinates. To enable translation of information between LRG and genomic coordinates, LRGs include mapping to the human genome assembly. LRGs are compiled and maintained by the National Center for Biotechnology Information (NCBI) and European Bioinformatics Institute (EBI). LRG reference sequences are selected in collaboration with the diagnostic and research communities, locus-specific database curators and mutation consortia. Currently >700 LRGs have been created, of which >400 are publicly available. The aim is to create an LRG for every locus with clinical implications

    The completion of the Mammalian Gene Collection

    No full text
    Since its start, the Mammalian Gene Collection (MGC) has sought to provide at least one full-protein-coding sequence cDNA clone for every human and mouse gene with a RefSeq transcript, and at least 6200 rat genes. The MGC cloning effort initially relied on random expressed sequence tag screening of cDNA libraries. Here, we summarize our recent progress using directed RT-PCR cloning and DNA synthesis. The MGC now contains clones with the entire protein-coding sequence for 92% of human and 89% of mouse genes with curated RefSeq (NM-accession) transcripts, and for 97% of human and 96% of mouse genes with curated RefSeq transcripts that have one or more PubMed publications, in addition to clones for more than 6300 rat genes. These high-quality MGC clones and their sequences are accessible without restriction to researchers worldwide

    The genome sequence of taurine cattle: A window to ruminant biology and evolution

    No full text
    To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specific variations in genes associated with lactation and immune responsiveness. Genes involved in metabolism are generally highly conserved, although five metabolic genes are deleted or extensively diverged from their human orthologs. The cattle genome sequence thu5 provides a resource for understanding mammalian evolution and accelerating livestock genetic improvement for milk and meat production

    The genome sequence of taurine cattle: A window to ruminant biology and evolution

    No full text
    To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specific variations in genes associated with lactation and immune responsiveness. Genes involved in metabolism are generally highly conserved, although five metabolic genes are deleted or extensively diverged from their human orthologs. The cattle genome sequence thu5 provides a resource for understanding mammalian evolution and accelerating livestock genetic improvement for milk and meat production

    The genome sequence of taurine cattle: A window to ruminant biology and evolution

    No full text
    To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specific variations in genes associated with lactation and immune responsiveness. Genes involved in metabolism are generally highly conserved, although five metabolic genes are deleted or extensively diverged from their human orthologs. The cattle genome sequence thu5 provides a resource for understanding mammalian evolution and accelerating livestock genetic improvement for milk and meat production
    corecore