103 research outputs found

    Structural elucidation of a novel phosphoglycolipid isolated from six species of Halomonas.

    Get PDF
    The structure of a new phosphoglycolipid from the halophilic Gram-negative bacteria Halomonas elongata ATCC 33173(T), Halomonas eurihalina ATCC 49336(T), Halomonas almeriensis CECT 7050(T), strain Sharm (AM238662), Halomonas halophila DSM 4770(T), and Halomonas salina ATCC 49509(T) was elucidated by NMR and mass spectroscopy studies. In all of the species examined, the polar lipid composition consisted of 1,2-diacylglycero-3-phosphorylethanolamine, 1,2-diacylglycero-3-phosphoryl-glycerol, bisphosphatidyl glycerol, and the new phosphoglycolipid PGL1. The structure of PGL1 was established to be (2-(alpha-D-glucopyranosyloxy)-3-hydroxy-propyl)-phosphatidyl diacylglycerol. C16:0;C18:1 and C16:0;C19:cyclopropane are the most abundant acyl chains linked to the phosphatidylglycerol moiety of each isolated PGL1. All of the species presenting the lipid PGL1 belong to Halomonas rRNA group 1, suggesting that the new phosphoglycolipid could be a chemotaxonomic marker of this phylogenetic group

    Impact of heat treatments on technological performance of re-milled semolina dough and bread

    Get PDF
    Re-milled semolina used for bread making is appreciated from consumers for its typical sensory features and nutritional attributes. Fluid bed drying treatment can be applied to semolina to change its bacteriological properties, to prolong shelf life by decreasing the risk of mould development, and to degrade some mycotoxins. The main goal of the present work was to evaluate the impact of heat treatment on structural development of semolina dough during mixing and leavening and on bread characteristics. Semolina was treated with fluidized bed drying at 90°C, 120°C, or 150°C for 5, 15 or 30 min. The heat treatment affected colour, moisture content, and farinograph indices of semolina. Results showed that the use of heat treated re-milled semolina significantly (P <0.05) affected the dough leavening kinetics and bread parameters such as crumb structure and mechanical parameters, in particular for treatment at 150°C for 30 min. On the contrary, after treatment of semolina at 120°C for 30 min, an improvement in the leavening phase of dough and no significant effects on bread quality were observed. Therefore, moderate heat treatment can be applied to semolina without having any negative impact

    Cell Line Data Base: structure and recent improvements towards molecular authentication of human cell lines

    Get PDF
    The Cell Line Data Base (CLDB) is a well-known reference information source on human and animal cell lines including information on more than 6000 cell lines. Main biological features are coded according to controlled vocabularies derived from international lists and taxonomies. HyperCLDB (http://bioinformatics.istge.it/hypercldb/) is a hypertext version of CLDB that improves data accessibility by also allowing information retrieval through web spiders. Access to HyperCLDB is provided through indexes of biological characteristics and navigation in the hypertext is granted by many internal links. HyperCLDB also includes links to external resources. Recently, an interest was raised for a reference nomenclature for cell lines and CLDB was seen as an authoritative system. Furthermore, to overcome the cell line misidentification problem, molecular authentication methods, such as fingerprinting, single-locus short tandem repeat (STR) profile and single nucleotide polymorphisms validation, were proposed. Since this data is distributed, a reference portal on authentication of human cell lines is needed. We present here the architecture and contents of CLDB, its recent enhancements and perspectives. We also present a new related database, the Cell Line Integrated Molecular Authentication (CLIMA) database (http://bioinformatics.istge.it/clima/), that allows to link authentication data to actual cell lines

    Terapia dell'epatite C: identificazione di nuove molecole attive su diversi bersagli

    Get PDF
    Il virus dell'epatite C (HCV) è l'agente eziologico di una grave forma di epatite trasmessa per via parenterale. Le proteine codificate dal genoma virale rappresentano un appetibile target per lo sviluppo di farmaci antivirali. Le classi di molecole che abbiamo saggiato per la loro attività  inibente sui diversi enzimi sono numerose. Esse possono essere raggruppate in due famiglie, gli analoghi di struttura nucleosidi e i composti non-nucleosidici

    Akt Regulates Drug-Induced Cell Death through Bcl-w Downregulation

    Get PDF
    Akt is a serine threonine kinase with a major role in transducing survival signals and regulating proteins involved in apoptosis. To find new interactors of Akt involved in cell survival, we performed a two-hybrid screening in yeast using human full-length Akt c-DNA as bait and a murine c-DNA library as prey. Among the 80 clones obtained, two were identified as Bcl-w. Bcl-w is a member of the Bcl-2 family that is essential for the regulation of cellular survival, and that is up-regulated in different human tumors, such as gastric and colorectal carcinomas. Direct interaction of Bcl-w with Akt was confirmed by immunoprecipitation assays. Subsequently, we addressed the function of this interaction: by interfering with the activity or amount of Akt, we have demonstrated that Akt modulates the amount of Bcl-w protein. We have found that inhibition of Akt activity may promote apoptosis through the downregulation of Bcl-w protein and the consequential reduction in interaction of Bcl-w with pro-apoptotic members of the Bcl-2 family. Our data provide evidence that Bcl-w is a new member of the Akt pathway and that Akt may induce anti-apoptotic signals at least in part through the regulation of the amount and activity of Bcl-w

    A diastrophic dysplasia sulfate transporter (SLC26A2) mutant mouse: morphological and biochemical characterization of the resulting chondrodysplasia phenotype

    Get PDF
    Mutations in the diastrophic dysplasia sulfate transporter (DTDST or SLC26A2) cause a family of recessively inherited chondrodysplasias including, in order of decreasing severity, achondrogenesis 1B, atelosteogenesis 2, diastrophic dysplasia (DTD) and recessive multiple epiphyseal dysplasia. The gene encodes a widely distributed sulfate/chloride antiporter of the cell membrane whose function is crucial for the uptake of inorganic sulfate, which is needed for proteoglycan sulfation. To provide new insights in the pathogenetic mechanisms leading to skeletal and connective tissue dysplasia and to obtain an in vivo model for therapeutic approaches to DTD, we generated a Dtdst knock-in mouse with a partial loss of function of the sulfate transporter. In addition, the intronic neomycine cassette in the mutant allele contributed to the hypomorphic phenotype by inducing abnormal splicing. Homozygous mutant mice were characterized by growth retardation, skeletal dysplasia and joint contractures, thereby recapitulating essential aspects of the DTD phenotype in man. The skeletal phenotype included reduced toluidine blue staining of cartilage, chondrocytes of irregular size, delay in the formation of the secondary ossification center and osteoporosis of long bones. Impaired sulfate uptake was demonstrated in chondrocytes, osteoblasts and fibroblasts. In spite of the generalized nature of the sulfate uptake defect, significant proteoglycan undersulfation was detected only in cartilage. Chondrocyte proliferation and apoptosis studies suggested that reduced proliferation and/or lack of terminal chondrocyte differentiation might contribute to reduced bone growth. The similarity with human DTD makes this mouse strain a useful model to explore pathogenetic and therapeutic aspects of DTDST-related disorder

    Mechanisms of endothelial cell dysfunction in cystic fibrosis

    Get PDF
    Although cystic fibrosis (CF) patients exhibit signs of endothelial perturbation, the functions of the cystic fibrosis conductance regulator (CFTR) in vascular endothelial cells (EC) are poorly defined. We sought to uncover biological activities of endothelial CFTR, relevant for vascular homeostasis and inflammation. We examined cells from human umbilical cords (HUVEC) and pulmonary artery isolated from non-cystic fibrosis (PAEC) and CF human lungs (CF-PAEC), under static conditions or physiological shear. CFTR activity, clearly detected in HUVEC and PAEC, was markedly reduced in CF-PAEC. CFTR blockade increased endothelial permeability to macromolecules and reduced trans‑endothelial electrical resistance (TEER). Consistent with this, CF-PAEC displayed lower TEER compared to PAEC. Under shear, CFTR blockade reduced VE-cadherin and p120 catenin membrane expression and triggered the formation of paxillin- and vinculin-enriched membrane blebs that evolved in shrinking of the cell body and disruption of cell-cell contacts. These changes were accompanied by enhanced release of microvesicles, which displayed reduced capability to stimulate proliferation in recipient EC. CFTR blockade also suppressed insulin-induced NO generation by EC, likely by inhibiting eNOS and AKT phosphorylation, whereas it enhanced IL-8 release. Remarkably, phosphodiesterase inhibitors in combination with a β2 adrenergic receptor agonist corrected functional and morphological changes triggered by CFTR dysfunction in EC. Our results uncover regulatory functions of CFTR in EC, suggesting a physiological role of CFTR in the maintenance EC homeostasis and its involvement in pathogenetic aspects of CF. Moreover, our findings open avenues for novel pharmacology to control endothelial dysfunction and its consequences in CF

    Structure and Properties of the C-terminal Domain of Insulin-like Growth Factor-binding Protein-1 Isolated from Human Amniotic Fluid

    Get PDF
    Insulin-like growth factor (IGF)-binding protein-1 (IGFBP-1) regulates the activity of the insulin-like growth factors in early pregnancy and is, thus, thought to play a key role at the fetal-maternal interface. The C-terminal domain of IGFBP-1 and three isoforms of the intact protein were isolated from human amniotic fluid, and sequencing of the four N-terminal polypeptide chains showed them to be highly pure. The addition of both intact IGFBP-1 and its C-terminal fragment to cultured fibroblasts has a similar stimulating effect on cell migration, and therefore, the domain has a biological activity on its own. The three-dimensional structure of the C-terminal domain was determined by x-ray crystallography to 1.8 Angstroms resolution. The fragment folds as a thyroglobulin type I domain and was found to bind the Fe(2+) ion in the crystals through the only histidine residue present in the polypeptide chain. Iron (II) decreases the binding of intact IGFBP-1 and the C-terminal domain to IGF-II, suggesting that the metal binding site is close to or part of the surface of interaction of the two molecules

    Monitoring COVID-19 transmission risks by quantitative real-time PCR tracing of droplets in hospital and living environments

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) environmental contamination occurs through droplets and biological fluids released in the surroundings from patients or asymptomatic carriers. Surfaces and objects contaminated by saliva or nose secretions represent a risk for indirect transmission of coronavirus disease 2019 (COVID-19). We assayed surfaces from hospital and living spaces to identify the presence of viral RNA and the spread of fomites in the environment. Anthropic contamination by droplets and biological fluids was monitored by detecting the microbiota signature using multiplex quantitative real-time PCR (qPCR) on selected species and massive sequencing on 16S amplicons. A total of 92 samples (flocked swabs) were collected from critical areas during the pandemic, including indoor (three hospitals and three public buildings) and outdoor surfaces exposed to anthropic contamination (handles and handrails, playgrounds). Traces of biological fluids were frequently detected in spaces open to the public and on objects that are touched with the hands (.80%). However, viral RNA was not detected in hospital wards or other indoor and outdoor surfaces either in the air system of a COVID hospital but only in the surroundings of an infected patient, in consistent association with droplet traces and fomites. Handled objects accumulated the highest level of multiple contaminations by saliva, nose secretions, and fecal traces, further supporting the priority role of handwashing in prevention. In conclusion, anthropic contamination by droplets and biological fluids is widespread in spaces open to the public and can be traced by qPCR. Monitoring fomites can support evaluation of indirect transmission risks for coronavirus or other flu-like viruses in the environment
    corecore