14 research outputs found

    Prognostic biomarker soluble ST2 exhibits diurnal variation in chronic heart failure patients

    Get PDF
    Aim: Soluble suppression of tumorigenicity-2 (sST2) is a strong prognostic biomarker in heart failure. The emerging understanding of circadian biology in cardiovascular disease may lead to novel applications in prognosis and diagnosis and may provide insight into mechanistic aspects of the disease–biomarker interaction. So far, it is unknown whether sST2 exhibits a diurnal rhythm. Repeated measurements of sST2 may aid in clinical decision making. The goal of this study was to investigate whether sST2 exhibits diurnal variation in patients with heart failure with reduced ejection fraction (HFrEF) and in control subjects, thereby enhancing its diagnostic and prognostic values. Methods and results: The study comprised 32 subjects: 16 HFrEF patients and 16 controls. Blood was collected at seven subsequent time points during a 24 h time period. sST2, N-terminal pro-B-type natriuretic peptide (NT-proBNP), melatonin, and cortisol were measured from serum. Peak values of sST2 clustered at daytime (modal value: 5 p.m.) in 87.6% of all subjects (81.3% of patients, P = 0.021; 93.8% of controls, P = 0.001), and minimum concentrations at night-time (modal value: 5 a.m.) in 84.4% (87.5% of patients, P = 0.004 81.3% of controls, P = 0.021). A cosinor analysis of mean normalized sST2 values revealed significant cosine shaped 24 h oscillations of patients (P = 0.026) and controls (P = 0.037). NT-proBNP in contrast did not show a diurnal rhythm, while melatonin and cortisol patterns were intact in all subjects. Conclusions: sST2 exhibits a diurnal rhythm with lower values in the morning than in the late afternoon. This new insight could lead to refinement of its diagnostic and prognostic values through specified and consistent sampling times with repeated measurements. For example, by measuring sST2 during the afternoon, when levels are at their highest, false negatives on prognosis prediction could be avoided

    Cohort profile of BIOMArCS: The BIOMarker study to identify the Acute risk of a Coronary Syndrome-a prospective multicentre biomarker study conducted in the Netherlands

    Get PDF
    __Purpose:__ Progression of stable coronary artery disease (CAD) towards acute coronary syndrome (ACS) is a dynamic and heterogeneous process with many intertwined constituents, in which a plaque destabilising sequence could lead to ACS within short time frames. Current CAD risk assessment models, however, are not designed to identify increased vulnerability for the occurrence of coronary events within a precise, short time frame at the individual patient level. The BIOMarker study to identify the Acute risk of a Coronary Syndrome (BIOMArCS) was designed to evaluate whether repeated measurements of multiple biomarkers can predict such 'vulnerable periods'. __Participants:__ BIOMArCS is a multicentre, prospective, observational study of 844 patients presenting with ACS, either with or without ST-elevation and at least one additional cardiovascular risk factor. __Methods and analysis:__ We hypothesised that patterns of circulating biomarkers that reflect the various pathophysiological components of CAD, such as distorted lipid metabolism, vascular inflammation, endothelial dysfunction, increased thrombogenicity and ischaemia, diverge in the days to weeks before a coronary event. Divergent biomarker patterns, identified by serial biomarker measurements during 1-year follow-up might then indicate 'vulnerable periods' during which patients with CAD are at high short-Term risk of developing an ACS. Venepuncture was performed every fortnight during the first half-year and monthly thereafter. As prespecified, patient enrolment was terminated after the primary end point of cardiovascular death or hospital admission for nonfatal ACS had occurred in 50 patients. A case-cohort design will explore differences in temporal patterns of circulating biomarkers prior to the repeat ACS

    A mutation update for the FLNC gene in myopathies and cardiomyopathies

    Get PDF
    Filamin C (FLNC) variants are associated with cardiac and muscular phenotypes. Originally, FLNC variants were described in myofibrillar myopathy (MFM) patients. Later, high-throughput screening in cardiomyopathy cohorts determined a prominent role for FLNC in isolated hypertrophic and dilated cardiomyopathies (HCM and DCM). FLNC variants are now among the more prevalent causes of genetic DCM. FLNC-associated DCM is associated with a malignant clinical course and a high risk of sudden cardiac death. The clinical spectrum of FLNC suggests different pathomechanisms related to variant types and their location in the gene. The appropriate functioning of FLNC is crucial for structural integrity and cell signaling of the sarcomere. The secondary protein structure of FLNC is critical to ensure this function. Truncating variants with subsequent haploinsufficiency are associated with DCM and cardiac arrhythmias. Interference with the dimerization and folding of the protein leads to aggregate formation detrim

    Proteomic and Functional Studies Reveal Detyrosinated Tubulin as Treatment Target in Sarcomere Mutation-Induced Hypertrophic Cardiomyopathy

    Get PDF
    BACKGROUND: Hypertrophic cardiomyopathy (HCM) is the most common genetic heart disease. While ≈50% of patients with HCM carry a sarcomere gene mutation (sarcomere mutation-positive, HCMSMP), the genetic background is unknown in the other half of the patients (sarcomere mutation-negative, HCMSMN). Genotype-specific differences have been reported in cardiac function. Moreover, HCMSMN patients have later disease onset and a better prognosis than HCMSMP patients. To define if genotype-specific derailments at the protein level may explain the heterogeneity in disease development, we performed a proteomic analysis in cardiac tissue from a clinically well-phenotyped HCM patient group. METHODS: A proteomics screen was performed in cardiac tissue from 39 HCMSMP patients, 11HCMSMN patients, and 8 nonfailing controls. Patients with HCM had obstructive cardiomyopathy with left ventricular outflow tract obstruction and diastolic dysfunction. A novel MYBPC32373insG mouse model was used to confirm functional relevance of our proteomic findings. RESULTS: In all HCM patient samples, we found lower levels of metabolic pathway proteins and higher levels of extracellular matrix proteins. Levels of t

    Sudden Cardiac Death Prediction in Arrhythmogenic Right Ventricular Cardiomyopathy: A Multinational Collaboration

    Get PDF
    BACKGROUND: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is associated with ventricular arrhythmias (VA) and sudden cardiac death (SCD). A model was recently developed to predict incident sustained VA in patients with ARVC. However, since this outcome may overestimate the risk for SCD, we aimed to specifically predict life-threatening VA (LTVA) as a closer surrogate for SCD. METHODS: We assembled a retrospective cohort of definite ARVC cases from 15 centers in North America and Europe. Association of 8 prespecified clinical predictors with LTVA (SCD, aborted SCD, sustained, or implantable cardioverter-defibrillator treated ventricular tachycardia >250 beats per minute) in follow-up was assessed by Cox regression with backward selection. Candidate variables included age, sex, prior sustained VA (≥30s, hemodynamically unstable, or implantable cardioverter-defibrillator treated ventricular tachycardia; or aborted SCD), syncope, 24-hour premature ventricular complexes count, the number of anterior and inferior leads with T-wave inversion, left and right ventricular ejection fraction. The resulting model was internally validated using bootstrapping. RESULTS: A total of 864 patients with definite ARVC (40±16 years; 53% male) were included. Over 5.75 years (interquartile range, 2.77-10.58) of follow-up, 93 (10.8%) patients experienced LTVA including 15 with SCD/aborted SCD (1.7%). Of the 8 prespecified clinical predictors, only 4 (younger age, male sex, premature ventricular complex count, and number of leads with T-wave inversion) were associated with LTVA. Notably, prior sustained VA did not predict subsequent LTVA (P=0.850). A model including only these 4 predictors had an optimism-corrected C-index of 0.74 (95% CI, 0.69-0.80) and calibration slope of 0.95 (95% CI, 0.94-0.98) indicating minimal over-optimism. CONCLUSIO

    A new prediction model for ventricular arrhythmias in arrhythmogenic right ventricular cardiomyopathy

    Get PDF
    AIMS: Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVC) is characterized by ventricular arrhythmias (VAs) and sudden cardiac death (SCD). We aimed to develop a model for individualized prediction of incident VA/SCD in ARVC patients. METHODS AND RESULTS: Five hundred and twenty-eight patients with a definite diagnosis and no history of sustained VAs/SCD at baseline, aged 38.2 ± 15.5 years, 44.7% male, were enrolled from five registries in North America and Europe. Over 4.83 (interquartile range 2.44-9.33) years of follow-up, 146 (27.7%) experienced sustained VA, defined as SCD, aborted SCD, sustained ventricular tachycardia, or appropriate implantable cardioverter-defibrillator (ICD) therapy. A prediction model estimating annual VA risk was developed using Cox regression with internal validation. Eight potential predictors were pre-specified: age, sex, cardiac syncope in the prior 6 months, non-sustained ventricular tachycardia, number of premature ventricular complexes in 24 h, number of leads with T-wave inversion, and right and left ventricular ejection fractions (LVEFs). All except LVEF were retained in the final model. The model accurately distinguished patients with and without events, with an optimism-corrected C-index of 0.77 [95% confidence interval (CI) 0.73-0.81] and minimal over-optimism [calibration slope of 0.93 (95% CI 0.92-0.95)]. By decision curve analysis, the clinical benefit of the model was superior to a current consensus-based ICD placement algorithm with a 20.6% reduction of ICD placements with the same proportion of protected patients (P < 0.001). CONCLUSION: Using the largest cohort of patients with ARVC and no prior VA, a prediction model using readily available clinical parameters was devised to estimate VA risk and guide decisions regarding primary prevention ICDs (www.arvcrisk.com)

    Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure

    Get PDF
    Heart failure (HF) is a leading cause of morbidity and mortality worldwide. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained. We report results from a GWAS meta-analysis of HF comprising 47,309 cases and 930,014 controls. Twelve independent variants at 11 genomic loci are associated with HF, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function, suggesting shared genetic aetiology. Functional analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homoeostasis (BAG3), and cellular senescence (CDKN1A). Mendelian randomisation analysis supports causal roles for several HF risk factors, and demonstrates CAD-independent effects for atrial fibrillation, body mass index, and hypertension. These findings extend our knowledge of the pathways underlying HF and may inform new therapeutic strategies

    Progression of conventional cardiovascular risk factors and vascular disease risk in individuals: insights from the PROG-IMT consortium

    Get PDF
    Aims: Averaged measurements, but not the progression based on multiple assessments of carotid intima-media thickness, (cIMT) are predictive of cardiovascular disease (CVD) events in individuals. Whether this is true for conventional risk factors is unclear. Methods and results: An individual participant meta-analysis was used to associate the annualised progression of systolic blood pressure, total cholesterol, low-density lipoprotein cholesterol and high-density lipoprotein cholesterol with future cardiovascular disease risk in 13 prospective cohort studies of the PROG-IMT collaboration (n = 34,072). Follow-up data included information on a combined cardiovascular disease endpoint of myocardial infarction, stroke, or vascular death. In secondary analyses, annualised progression was replaced with average. Log hazard ratios per standard deviation difference were pooled across studies by a random effects meta-analysis. In primary analysis, the annualised progression of total cholesterol was marginally related to a higher cardiovascular disease risk (hazard ratio (HR) 1.04, 95% confidence interval (CI) 1.00 to 1.07). The annualised progression of systolic blood pressure, low-density lipoprotein cholesterol and high-density lipoprotein cholesterol was not associated with future cardiovascular disease risk. In secondary analysis, average systolic blood pressure (HR 1.20 95% CI 1.11 to 1.29) and low-density lipoprotein cholesterol (HR 1.09, 95% CI 1.02 to 1.16) were related to a greater, while high-density lipoprotein cholesterol (HR 0.92, 95% CI 0.88 to 0.97) was related to a lower risk of future cardiovascular disease events. Conclusion: Averaged measurements of systolic blood pressure, low-density lipoprotein cholesterol and high-density lipoprotein cholesterol displayed significant linear relationships with the risk of future cardiovascular disease events. However, there was no clear association between the annualised progression of these conventional risk factors in individuals with the risk of future clinical endpoints

    Pulmonary artery pressure-guided therapy in ambulatory patients with symptomatic heart failure: the CardioMEMS European Monitoring Study for Heart Failure (MEMS-HF)

    No full text
    Aims: Heart failure (HF) leads to repeat hospitalisations and reduces the duration and quality of life. Pulmonary artery pressure (PAP)-guided HF management using the CardioMEMS™ HF system was shown to be safe and reduce HF hospitalisation (HFH) rates in New York Heart Association (NYHA) class III patients. However, these findings have not been replicated in health systems outside the United States. Therefore, the CardioMEMS European Monitoring Study for Heart Failure (MEMS-HF) evaluated the safety, feasibility, and performance of this device in Germany, The Netherlands, and Ireland. Methods and results: A total of 234 NYHA class III patients (68 ± 11 years, 22% female, ≥1 HFH in the preceding year) from 31 centres were implanted with a CardioMEMS sensor and underwent PAP-guided HF management. One-year rates of freedom from device- or system-related complications and from sensor failure (co-primary outcomes) were 98.3% [95% confidence interval (CI) 95.8–100.0] and 99.6% (95% CI 97.6–100.0), respectively. Survival rate was 86.2%. For the 12 months post- vs. pre-implant, HFHs decreased by 62% (0.60 vs. 1.55 events/patient-year; hazard ratio 0.38, 95% CI 0.31–0.48; P < 0.0001). After 12 months, mean PAP decreased by 5.1 ± 7.4 mmHg, Kansas City Cardiomyopathy Questionnaire (KCCQ) overall/clinical summary scores increased from 47.0 ± 24.0/51.2 ± 24.8 to 60.5 ± 24.3/62.4 ± 24.1 (P < 0.0001), and the 9-item Patient Health Questionnaire sum score improv

    Prognostic value of serial galectin-3 measurements in patients with acute heart failure

    Get PDF
    Background--Several clinical studies have evaluated the association between galectin-3 levels and outcome in patients with heart failure (HF). However, little is known about the predictive value of repeated galectin-3 measurements. This study evaluates the prognostic value of repeated time-dependent galectin-3 measurements in acute HF patients. Methods and Results--In the TRIUMPH (Translational Initiative on Unique and Novel Strategies for Management of Patients with Heart Failure) clinical cohort study, 496 acute HF patients were enrolled in 14 hospitals in The Netherlands, between 2009 and 2014. Repeated blood samples (7) were drawn during 1-year follow-up. Associations between repeated biomarker measurements and the primary end point were assessed using a joint model. Median age was 74 years and 37% were women. The primary end point, composite of all-cause mortality and HF rehospitalization, was reached in 188 patients (40%), during a median follow-up of 325 days (interquartile range 85-401). The median baseline galectin-3 level was 24 ng/mL (interquartile range 18-34). The mean number of galectin-3 measurements available per patient was 4.3. When repeated measurements were taken into account, the adjusted hazard ratio per 1 SD increase of the galectin-3 level (on the log2 scale) at any time point increased to 1.67 (95% confidence interval, 1.24-2.23, P < 0.001). After additional adjustment for repeated N-terminal pro-brain natriuretic peptide measurements, the association remained statistically significant. Conclusions--Repeated galectin-3 measurements appeared to be a strong predictor of outcome in acute HF patients, independent of N-terminal pro-brain natriuretic peptide. Hence, galectin-3 may be helpful in clinical practice for prognostication and treatment monitoring
    corecore