25 research outputs found

    Cardiorenal disease connection during post-menopause: The protective role of estrogen in uremic toxins induced microvascular dysfunction

    Get PDF
    Female gender, post-menopause, chronic kidney disease (CKD) and (CKD linked) microvascular disease are important risk factors for developing heart failure with preserved ejection fraction (HFpEF). Enhancing our understanding of the interrelation between these risk factors could greatly benefit the identification of new drug targets for future therapy. This review discusses the evidence for the protective role of estradiol (E2) in CKD-associated microvascular disease and related HFpEF. Elevated circulating levels of uremic toxins (UTs) during CKD may act in synergy with hormonal changes during post-menopause and could lead to coronary microvascular endothelial dysfunction in HFpEF. To elucidate the molecular mechanism involved, published transcriptome datasets of indoxyl sulfate (IS), high inorganic phosphate (HP) or E2 treated human derived endothelial cells from the NCBI Gene Expression Omnibus database were analyzed. In total, 36 genes overlapped in both IS- and HP-activated gene sets, 188 genes were increased by UTs (HP and/or IS) and decreased by E2, and 572 genes were decreased by UTs and increased by E2. Based on a comprehensive in silico analysis and literature studies of collected gene sets, we conclude that CKD-accumulated UTs could negatively impact renal and cardiac endothelial homeostasis by triggering extensive inflammatory responses and initiating dysregulation of angiogenesis. E2 may protect (myo)endothelium by inhibiting UTs-induced inflammation and ameliorating UTs-related uremic bleeding and thrombotic diathesis via restored coagulation capacity and hemostasis in injured vessels

    High-frequency metabolite profiling and the incidence of recurrent cardiac events in patients with post-acute coronary syndrome

    Get PDF
    Purpose: The aim of this study was to study temporal changes in metabolite profiles in patients with post-acute coronary syndrome (ACS), in particular prior to the development of recurrent ACS (reACS). Methods: BIOMArCS (BIOMarker study to identify the Acute risk of a Coronary Syndrome) is a prospective study including patients admitted for ACS, who underwent high-frequency blood sampling during 1-year follow-up. Within BIOMArCS, we performed a nested case-cohort analysis of 158 patients (28 cases of reACS). We determined 151 metabolites by nuclear magnetic resonance in seven (median) blood samples per patient. Temporal evolution of the metabolites and their relation with reACS was assessed by joint modelling. Results are reported as adjusted (for clinical factors) hazard ratios (aHRs). Results: Median age was 64 (25th–75th percentiles; 56–72) years and 78% were men. After multiple testing correction (p < 0.001), high concentrations of extremely large very low density lipoprotein (VLDL) particles (aHR 1.60/SD increase; 95%CI 1.25–2.08), very large VLDL particles (aHR 1.60/SD increase; 95%CI 1.25–2.08) and large VLDL particles (aHR 1.56/SD increase; 95%CI 1.22–2.05) were significantly associated with reACS. Moreover, these longitudinal particle concentrations showed a steady increase over time prior to reACS. Among the other metabolites, no significant associations were observed. Conclusion: Post-ACS patients with persistent high concentrations of extremely large, very large and large VLDL particles have increased risk of reACS within 1 year

    Evolution of renal function and predictive value of serial renal assessments among patients with acute coronary syndrome: BIOMArCS study

    Get PDF
    Background: Impaired renal function predicts mortality in acute coronary syndrome (ACS), but its evolution immediately following index ACS and preceding next ACS has not been described in detail. We aimed to describe this evolution using serial measurements of creatinine, glomerular filtration rate [eGFRCr] and cystatin C [CysC]. Methods: F

    Prognostic biomarker soluble ST2 exhibits diurnal variation in chronic heart failure patients

    Get PDF
    Aim: Soluble suppression of tumorigenicity-2 (sST2) is a strong prognostic biomarker in heart failure. The emerging understanding of circadian biology in cardiovascular disease may lead to novel applications in prognosis and diagnosis and may provide insight into mechanistic aspects of the disease–biomarker interaction. So far, it is unknown whether sST2 exhibits a diurnal rhythm. Repeated measurements of sST2 may aid in clinical decision making. The goal of this study was to investigate whether sST2 exhibits diurnal variation in patients with heart failure with reduced ejection fraction (HFrEF) and in control subjects, thereby enhancing its diagnostic and prognostic values. Methods and results: The study comprised 32 subjects: 16 HFrEF patients and 16 controls. Blood was collected at seven subsequent time points during a 24 h time period. sST2, N-terminal pro-B-type natriuretic peptide (NT-proBNP), melatonin, and cortisol were measured from serum. Peak values of sST2 clustered at daytime (modal value: 5 p.m.) in 87.6% of all subjects (81.3% of patients, P = 0.021; 93.8% of controls, P = 0.001), and minimum concentrations at night-time (modal value: 5 a.m.) in 84.4% (87.5% of patients, P = 0.004 81.3% of controls, P = 0.021). A cosinor analysis of mean normalized sST2 values revealed significant cosine shaped 24 h oscillations of patients (P = 0.026) and controls (P = 0.037). NT-proBNP in contrast did not show a diurnal rhythm, while melatonin and cortisol patterns were intact in all subjects. Conclusions: sST2 exhibits a diurnal rhythm with lower values in the morning than in the late afternoon. This new insight could lead to refinement of its diagnostic and prognostic values through specified and consistent sampling times with repeated measurements. For example, by measuring sST2 during the afternoon, when levels are at their highest, false negatives on prognosis prediction could be avoided

    The temporal pattern of immune and inflammatory proteins prior to a recurrent coronary event in post-acute coronary syndrome patients

    Get PDF
    Purpose: We assessed the temporal pattern of 29 immune and inflammatory proteins in post-acute coronary syndrome (ACS) patients, prior to the development of recurrent ACS. Methods: High-frequency blood sampling was performed in 844 patients admitted for ACS during one-year follow-up. We conducted a case-control study on the 45 patients who experienced reACS (cases) and two matched event-free patients (controls) per case. Olink Proteomics’ immunoassay was used to obtain serum levels of the 29 proteins, expressed in an arbitrary unit on the log2-scale (Normalized Protein eXpression, NPX). Linear mixed-effects models were applied to examine the temporal pattern of the proteins, and to illustrate differences between cases and controls. Results: Mean age was 66 ± 12 years and 80% were men. Cases and controls had similar baseline clinical characteristics. During the first 30 days, and after multiple testing correction, cases had significantly higher serum levels of CXCL1 (difference of 1.00 NPX, p ¼ 0.002), CD84 (difference of 0.64 NPX, p ¼ 0.002) and TNFRSF10A (difference of 0.41 NPX, p < 0.001) than controls. After 30 days, serum levels of all 29 proteins were similar in cases and controls. In particular, no increase was observed prior to reACS. Conclusions: Among 29 immune and inflammatory proteins, CXCL1, CD84 and TNFRSF10A were associated with early reACS after initial ACS-admission

    The temporal pattern of immune and inflammatory proteins prior to a recurrent coronary event in post-acute coronary syndrome patients

    Get PDF
    Purpose: We assessed the temporal pattern of 29 immune and inflammatory proteins in post-acute coronary syndrome (ACS) patients, prior to the development of recurrent ACS. Methods: High-frequency blood sampling was performed in 844 patients admitted for ACS during one-year follow-up. We conducted a case-control study on the 45 patients who experienced reACS (cases) and two matched event-free patients (controls) per case. Olink Proteomics’ immunoassay was used to obtain serum levels of the 29 proteins, expressed in an arbitrary unit on the log2-scale (Normalized Protein eXpression, NPX). Linear mixed-effects models were applied to examine the temporal pattern of the proteins, and to illustrate differences between cases and controls. Results: Mean age was 66 ± 12 years and 80% were men. Cases and controls had similar baseline clinical characteristics. During the first 30 days, and after multiple testing correction, cases had significantly higher serum levels of CXCL1 (difference of 1.00 NPX, p = 0.002), CD84 (difference of 0.64 NPX, p = 0.002) and TNFRSF10A (difference of 0.41 NPX, p < 0.001) than controls. After 30 days, serum levels of all 29 proteins were similar in cases and controls. In particular, no increase was observed prior to reACS. Conclusions: Among 29 immune and inflammatory proteins, CXCL1, CD84 and TNFRSF10A were associated with early reACS after initial ACS-admission

    Cohort profile of BIOMArCS: The BIOMarker study to identify the Acute risk of a Coronary Syndrome-a prospective multicentre biomarker study conducted in the Netherlands

    Get PDF
    __Purpose:__ Progression of stable coronary artery disease (CAD) towards acute coronary syndrome (ACS) is a dynamic and heterogeneous process with many intertwined constituents, in which a plaque destabilising sequence could lead to ACS within short time frames. Current CAD risk assessment models, however, are not designed to identify increased vulnerability for the occurrence of coronary events within a precise, short time frame at the individual patient level. The BIOMarker study to identify the Acute risk of a Coronary Syndrome (BIOMArCS) was designed to evaluate whether repeated measurements of multiple biomarkers can predict such 'vulnerable periods'. __Participants:__ BIOMArCS is a multicentre, prospective, observational study of 844 patients presenting with ACS, either with or without ST-elevation and at least one additional cardiovascular risk factor. __Methods and analysis:__ We hypothesised that patterns of circulating biomarkers that reflect the various pathophysiological components of CAD, such as distorted lipid metabolism, vascular inflammation, endothelial dysfunction, increased thrombogenicity and ischaemia, diverge in the days to weeks before a coronary event. Divergent biomarker patterns, identified by serial biomarker measurements during 1-year follow-up might then indicate 'vulnerable periods' during which patients with CAD are at high short-Term risk of developing an ACS. Venepuncture was performed every fortnight during the first half-year and monthly thereafter. As prespecified, patient enrolment was terminated after the primary end point of cardiovascular death or hospital admission for nonfatal ACS had occurred in 50 patients. A case-cohort design will explore differences in temporal patterns of circulating biomarkers prior to the repeat ACS

    A mutation update for the FLNC gene in myopathies and cardiomyopathies

    Get PDF
    Filamin C (FLNC) variants are associated with cardiac and muscular phenotypes. Originally, FLNC variants were described in myofibrillar myopathy (MFM) patients. Later, high-throughput screening in cardiomyopathy cohorts determined a prominent role for FLNC in isolated hypertrophic and dilated cardiomyopathies (HCM and DCM). FLNC variants are now among the more prevalent causes of genetic DCM. FLNC-associated DCM is associated with a malignant clinical course and a high risk of sudden cardiac death. The clinical spectrum of FLNC suggests different pathomechanisms related to variant types and their location in the gene. The appropriate functioning of FLNC is crucial for structural integrity and cell signaling of the sarcomere. The secondary protein structure of FLNC is critical to ensure this function. Truncating variants with subsequent haploinsufficiency are associated with DCM and cardiac arrhythmias. Interference with the dimerization and folding of the protein leads to aggregate formation detrim

    Proteomic and Functional Studies Reveal Detyrosinated Tubulin as Treatment Target in Sarcomere Mutation-Induced Hypertrophic Cardiomyopathy

    Get PDF
    BACKGROUND: Hypertrophic cardiomyopathy (HCM) is the most common genetic heart disease. While ≈50% of patients with HCM carry a sarcomere gene mutation (sarcomere mutation-positive, HCMSMP), the genetic background is unknown in the other half of the patients (sarcomere mutation-negative, HCMSMN). Genotype-specific differences have been reported in cardiac function. Moreover, HCMSMN patients have later disease onset and a better prognosis than HCMSMP patients. To define if genotype-specific derailments at the protein level may explain the heterogeneity in disease development, we performed a proteomic analysis in cardiac tissue from a clinically well-phenotyped HCM patient group. METHODS: A proteomics screen was performed in cardiac tissue from 39 HCMSMP patients, 11HCMSMN patients, and 8 nonfailing controls. Patients with HCM had obstructive cardiomyopathy with left ventricular outflow tract obstruction and diastolic dysfunction. A novel MYBPC32373insG mouse model was used to confirm functional relevance of our proteomic findings. RESULTS: In all HCM patient samples, we found lower levels of metabolic pathway proteins and higher levels of extracellular matrix proteins. Levels of t
    corecore