178 research outputs found

    Computer simulation of the heavy-duty turbo-compounded diesel cycle for studies of engine efficiency and performance

    Get PDF
    Reductions in heat loss at appropriate points in the diesel engine which result in substantially increased exhaust enthalpy were shown. The concepts for this increased enthalpy are the turbocharged, turbocompounded diesel engine cycle. A computer simulation of the heavy duty turbocharged turbo-compounded diesel engine system was undertaken. This allows the definition of the tradeoffs which are associated with the introduction of ceramic materials in various parts of the total engine system, and the study of system optimization. The basic assumptions and the mathematical relationships used in the simulation of the model engine are described

    A computer simulation of the turbocharged turbo compounded diesel engine system: A description of the thermodynamic and heat transfer models

    Get PDF
    A computer simulation of the turbocharged turbocompounded direct-injection diesel engine system was developed in order to study the performance characteristics of the total system as major design parameters and materials are varied. Quasi-steady flow models of the compressor, turbines, manifolds, intercooler, and ducting are coupled with a multicylinder reciprocator diesel model, where each cylinder undergoes the same thermodynamic cycle. The master cylinder model describes the reciprocator intake, compression, combustion and exhaust processes in sufficient detail to define the mass and energy transfers in each subsystem of the total engine system. Appropriate thermal loading models relate the heat flow through critical system components to material properties and design details. From this information, the simulation predicts the performance gains, and assesses the system design trade-offs which would result from the introduction of selected heat transfer reduction materials in key system components, over a range of operating conditions

    Energy-Optimal Coordination of Connected and Automated Vehicles at Multiple Intersections

    Full text link
    Urban intersections, merging roadways, roundabouts, and speed reduction zones along with the driver responses to various disturbances are the primary sources of bottlenecks in corridors that contribute to traffic congestion. The implementation of connected and automated technologies can enable a novel computational framework for real-time control aimed at optimizing energy consumption and travel time. In this paper, we propose a decentralized energy-efficient optimal control framework for two adjacent intersections. We derive a closed-form analytical solution that includes interior boundary conditions and evaluate the effectiveness of the solution through simulation. Fuel consumption and travel time are significantly reduced compared to the baseline scenario designed with conventional fixed time signalized intersections

    Compression Ratio Influence on Maximum Load of a Natural Gas Fueled HCCI Engine

    Get PDF
    This paper discusses the compression ratio influence on maximum load of a Natural Gas HCCI engine. A modified Volvo TD100 truck engine is controlled in a closed-loop fashion by enriching the Natural Gas mixture with Hydrogen. The first section of the paper illustrates and discusses the potential of using hydrogen enrichment of natural gas to control combustion timing. Cylinder pressure is used as the feedback and the 50 percent burn angle is the controlled parameter. Full-cycle simulation is compared to some of the experimental data and then used to enhance some of the experimental observations dealing with ignition timing, thermal boundary conditions, emissions and how they affect engine stability and performance. High load issues common to HCCI are discussed in light of the inherent performance and emissions tradeoff and the disappearance of feasible operating space at high engine loads. The problems of tighter limits for combustion timing, unstable operational points and physical constraints at high loads are discussed and illustrated by experimental results. Finally, the influence on operational limits, i.e., emissions peak pressure rise and peak cylinder pressure, from compression ratio at high load are discussed
    • …
    corecore