17 research outputs found

    Identification of lead anti-human cytomegalovirus compounds targeting MAP4K4 via machine learning analysis of kinase inhibitor screening data

    Get PDF
    Chemogenomic approaches involving highly annotated compound sets and cell based high throughput screening are emerging as a means to identify novel drug targets. We have previously screened a collection of highly characterized kinase inhibitors (Khan et al., Journal of General Virology, 2016) to identify compounds that increase or decrease expression of a human cytomegalovirus (HCMV) protein in infected cells. To identify potential novel anti-HCMV drug targets we used a machine learning approach to relate our phenotypic data from the aforementioned screen to kinase inhibition profiling of compounds used in this screen. Several of the potential targets had no previously reported role in HCMV replication. We focused on one potential anti-HCMV target, MAPK4K, and identified lead compounds inhibiting MAP4K4 that have anti-HCMV activity with little cellular cytotoxicity. We found that treatment of HCMV infected cells with inhibitors of MAP4K4, or an siRNA that inhibited MAP4K4 production, reduced HCMV replication and impaired detection of IE2-60, a viral protein necessary for efficient HCMV replication. Our findings demonstrate the potential of this machine learning approach to identify novel anti-viral drug targets, which can inform the discovery of novel anti-viral lead compounds

    T-Cell Epitope Prediction: Rescaling Can Mask Biological Variation between MHC Molecules

    Get PDF
    Theoretical methods for predicting CD8+ T-cell epitopes are an important tool in vaccine design and for enhancing our understanding of the cellular immune system. The most popular methods currently available produce binding affinity predictions across a range of MHC molecules. In comparing results between these MHC molecules, it is common practice to apply a normalization procedure known as rescaling, to correct for possible discrepancies between the allelic predictors. Using two of the most popular prediction software packages, NetCTL and NetMHC, we tested the hypothesis that rescaling removes genuine biological variation from the predicted affinities when comparing predictions across a number of MHC molecules. We found that removing the condition of rescaling improved the prediction software's performance both qualitatively, in terms of ranking epitopes, and quantitatively, in the accuracy of their binding affinity predictions. We suggest that there is biologically significant variation among class 1 MHC molecules and find that retention of this variation leads to significantly more accurate epitope prediction

    The viral Achilles heel: The Nucleocapsid protein of FIV/HIV and related lentiviruses as a therapeutic target

    No full text
    Therapeutic resistance to anti-viral drugs via mutation is a major challenge affecting both human and veterinary medicine. Since the discovery of the Human Immunodeficiency Virus (HIV) in 1984 this single disease has caused 25 million deaths worldwide, clearly highlighting the unique challenge in this research area. Amongst non-human vertebrates, Feline Immunodeficiency Virus (FIV) infection is perhaps the closest biological model of HIV infection with an analogous late-stage AIDS-type progression. FIV infection primarily occurs through biting and during mating with about 44 million cats currently infected worldwide. FIV and HIV are closely related to other lentiviruses including Simian Immunodeficiency Virus (SIV) and Equine Infectious Anemia Virus (EIAV), each of which is a species-specific virus using analogous proteins in the viral life cycle. The exploiting of these overlaps by targeting the mutation resistant nucleocapsid protein (NCp) in FIV that performs the same role as the NCp7 protein in HIV and other lentiviruses. This has led to the development of highly active small molecules, representing a new therapeutic approach against HIV. There is currently no crystal structure for the FIV nucleocapsid protein so, through the design of a strong homology model, we were able to dock existing and potential compounds in a form of in-silico screening using our results and the literature to train the model and improve the results. The active compounds were then synthesized and tested against chronically infected FIV cell lines, with pre-screen cytotoxic testing to assess the therapeutic window of activity. The validated anti-viral activity of the compounds puts us in a strong position for further development and the results of our approach will be described

    HTLV-1 proviral integration sites differ between asymptomatic carriers and patients with HAM/TSP

    Get PDF
    BACKGROUND: HTLV-1 causes proliferation of clonal populations of infected T cells in vivo, each clone defined by a unique proviral integration site in the host genome. The proviral load is strongly correlated with odds of the inflammatory disease HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). There is evidence that asymptomatic HTLV-1 carriers (ACs) have a more effective CD8 + T cell response, including a higher frequency of HLA class I alleles able to present peptides from a regulatory protein of HTLV-1, HBZ. We have previously shown that specific features of the host genome flanking the proviral integration site favour clone survival and spontaneous expression of the viral transactivator protein Tax in naturally infected PBMCs ex vivo. However, the previous studies were not designed or powered to detect differences in integration site characteristics between ACs and HAM/TSP patients. Here, we tested the hypothesis that the genomic environment of the provirus differs systematically between ACs and HAM/TSP patients, and between individuals with strong or weak HBZ presentation. METHODS: We used our recently described high-throughput protocol to map and quantify integration sites in 95 HAM/TSP patients and 68 ACs from Kagoshima, Japan, and 75 ACs from Kumamoto, Japan. Individuals with 2 or more HLA class I alleles predicted to bind HBZ peptides were classified ‘strong’ HBZ binders; the remainder were classified ‘weak binders’. RESULTS: The abundance of HTLV-1-infected T cell clones in vivo was correlated with proviral integration in genes and in areas with epigenetic marks associated with active regulatory elements. In clones of equivalent abundance, integration sites in genes and active regions were significantly more frequent in ACs than patients with HAM/TSP, irrespective of HBZ binding and proviral load. Integration sites in genes were also more frequent in strong HBZ binders than weak HBZ binders. CONCLUSION: Clonal abundance is correlated with integration in a transcriptionally active genomic region, and these regions may promote cell proliferation. A clone that reaches a given abundance in vivo is more likely to be integrated in a transcriptionally active region in individuals with a more effective anti-HTLV-1 immune response, such those who can present HBZ peptides or those who remain asymptomatic. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1743-422X-11-172) contains supplementary material, which is available to authorized users

    The relative contributions of infectious and mitotic spread to HTLV-1 persistence

    Get PDF
    Human T-lymphotropic virus type-1 (HTLV-1) persists within hosts via infectious spread (de novo infection) and mitotic spread (infected cell proliferation), creating a population structure of multiple clones (infected cell populations with identical genomic proviral integration sites). The relative contributions of infectious and mitotic spread to HTLV-1 persistence are unknown, and will determine the efficacy of different approaches to treatment. The prevailing view is that infectious spread is negligible in HTLV-1 persistence beyond early infection. However, in light of recent high-throughput data on the abundance of HTLV-1 clones, and recent estimates of HTLV-1 clonal diversity that are substantially higher than previously thought (typically between 104 and 105 HTLV-1+ T cell clones in the body of an asymptomatic carrier or patient with HTLV-1-associated myelopathy/tropical spastic paraparesis), ongoing infectious spread during chronic infection remains possible. We estimate the ratio of infectious to mitotic spread using a hybrid model of deterministic and stochastic processes, fitted to previously published HTLV-1 clonal diversity estimates. We investigate the robustness of our estimates using three alternative estimators. We find that, contrary to previous belief, infectious spread persists during chronic infection, even after HTLV-1 proviral load has reached its set point, and we estimate that between 100 and 200 new HTLV-1 clones are created and killed every day. We find broad agreement between all estimators. The risk of HTLV-1-associated malignancy and inflammatory disease is strongly correlated with proviral load, which in turn is correlated with the number of HTLV-1-infected clones, which are created by de novo infection. Our results therefore imply that suppression of de novo infection may reduce the risk of malignant transformation

    1,2,6-Thiadiazinones as Novel Narrow Spectrum Calcium/Calmodulin-Dependent Protein Kinase Kinase 2 (CaMKK2) Inhibitors.

    Get PDF
    We demonstrate for the first time that 4H-1,2,6-thiadiazin-4-one (TDZ) can function as a chemotype for the design of ATP-competitive kinase inhibitors. Using insights from a co-crystal structure of a 3,5-bis(arylamino)-4H-1,2,6-thiadiazin-4-one bound to calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2), several analogues were identified with micromolar activity through targeted displacement of bound water molecules in the active site. Since the TDZ analogues showed reduced promiscuity compared to their 2,4-dianilinopyrimidine counter parts, they represent starting points for development of highly selective kinase inhibitors

    Design and analysis of the 4-anilino-quin(az)oline kinase inhibition profiles of GAK/SLK/STK10 using quantitative structure activity relationships

    No full text
    The 4-anilinoquinoline and 4-anilinoquinazoline ring systems have been the focus of significant efforts in prior kinase drug discovery programs, which have led to approved medicines. Broad kinome profiles of these compounds have now been assessed with the advent of advanced screening technologies. These ring systems, while originally designed for specific targets including epidermal growth factor receptor (EGFR), actually display a number of potent collateral kinase targets, some of which have been associated with negative clinical outcomes. We have designed and synthesized a series of 4-anilino-quin(az)olines in order to better understand the structure activity relationships of three main collateral kinase targets of quin(az)oline-based kinase inhibitors: cyclin G associated kinase (GAK), STE20-like serine/threonine-protein kinase (SLK) and serine/threonine-protein kinase 10 (STK10). This was achieved through a series of quantitative structure activity relationship (QSAR) analysis, water mapping of the kinase ATP binding sites and extensive small molecule x-ray structural analysis

    Targeting the water network in cyclin G-associated kinase (GAK) with 4-anilino-quin(az)oline inhibitors

    No full text
    Water networks within kinase inhibitor design and more widely within drug discovery are generally poorly understood. The successful targeting of these networks prospectively has great promise for all facets of inhibitor design, including potency and selectivity for the target. Herein, we describe the design and testing of a targeted library of 4‐anilinoquin(az)olines for use as inhibitors of cyclin G‐associated kinase (GAK). GAK cellular target engagement assays, ATP binding‐site modelling and extensive water mapping provide a clear route to access potent inhibitors for GAK and beyond
    corecore