1,940 research outputs found

    Massive quiver matrix models for massive charged particles in AdS

    Full text link
    We present a new class of N=4{\cal N}=4 supersymmetric quiver matrix models and argue that it describes the stringy low-energy dynamics of internally wrapped D-branes in four-dimensional anti-de Sitter (AdS) flux compactifications. The Lagrangians of these models differ from previously studied quiver matrix models by the presence of mass terms, associated with the AdS gravitational potential, as well as additional terms dictated by supersymmetry. These give rise to dynamical phenomena typically associated with the presence of fluxes, such as fuzzy membranes, internal cyclotron motion and the appearance of confining strings. We also show how these models can be obtained by dimensional reduction of four-dimensional supersymmetric quiver gauge theories on a three-sphere.Comment: 43 pages + appendices, 4 figure

    Entanglement Scrambling in 2d Conformal Field Theory

    Get PDF
    We investigate how entanglement spreads in time-dependent states of a 1+1 dimensional conformal field theory (CFT). The results depend qualitatively on the value of the central charge. In rational CFTs, which have central charge below a critical value, entanglement entropy behaves as if correlations were carried by free quasiparticles. This leads to long-term memory effects, such as spikes in the mutual information of widely separated regions at late times. When the central charge is above the critical value, the quasiparticle picture fails. Assuming no extended symmetry algebra, any theory with c>1c>1 has diminished memory effects compared to the rational models. In holographic CFTs, with c1c \gg 1, these memory effects are eliminated altogether at strong coupling, but reappear after the scrambling time tβlogct \gtrsim \beta \log c at weak coupling.Comment: 52 pages, 7 figure; v2: references adde

    Models of infrared spectra of Sakurai's Object (V4334 Sgr) in 1997

    Full text link
    Theoretical spectral energy distributions computed for a grid of hydrogen-deficient and carbon-rich model atmospheres have been compared with the observed infrared (1--2.5 μ\mum) spectra of V4334 Sgr (Sakurai's Object) on 1997 April 21 and July 13. The comparison yields an effective temperature of \Tef = 5500 ±\pm 200 K for the April date and \Tef = 5250 ±\pm 200 K for July. The observed spectra are well fitted by Asplund et al. (1999) abundances, except that the carbon abundance is higher by 0.3 dex. Hot dust produces significant excess continuum at the long wavelength ends of the 1997 spectra. \keywords{Stars: individual: V4334 Sgr (Sakurai's Object) -- Stars: AGB and post-AGB evolution -- Stars: model atmospheres -- Stars: energy distributions -- Stars: effective temperatures}Comment: 6 pages, 7 eps figs, accepted for A

    A possible signature of terrestrial planet formation in the chemical composition of solar analogs

    Full text link
    Recent studies have shown that the elemental abundances in the Sun are anomalous when compared to most (about 85%) nearby solar twin stars. Compared to its twins, the Sun exhibits a deficiency of refractory elements (those with condensation temperatures Tc>900K) relative to volatiles (Tc<900K). This finding is speculated to be a signature of the planet formation that occurred more efficiently around the Sun compared with the majority of solar twins. Furthermore, within this scenario, it seems more likely that the abundance patterns found are specifically related to the formation of terrestrial planets. In this work we analyze abundance results from six large independent stellar abundance surveys to determine whether they confirm or reject this observational finding. We show that the elemental abundances derived for solar analogs in these six studies are consistent with the Tc trend suggested as a planet formation signature. The same conclusion is reached when those results are averaged heterogeneously. We also investigate the dependency of the abundances with first ionization potential (FIP), which correlates well with Tc. A trend with FIP would suggest a different origin for the abundance patterns found, but we show that the correlation with Tc is statistically more significant. We encourage similar investigations of metal-rich solar analogs and late F-type dwarf stars, for which the hypothesis of a planet formation signature in the elemental abundances makes very specific predictions. Finally, we examine a recent paper that claims that the abundance patterns of two stars hosting super-Earth like planets contradict the planet formation signature hypothesis. Instead, we find that the chemical compositions of these two stars are fully compatible with our hypothesis.Comment: To appear in Astronomy and Astrophysic

    The discrepancy in G-band contrast: Where is the quiet Sun?

    Full text link
    We compare the rms contrast in observed speckle reconstructed G-band images with synthetic filtergrams computed from two magneto-hydrodynamic simulation snapshots. The observations consist of 103 bursts of 80 frames each taken at the Dunn Solar Telescope (DST), sampled at twice the diffraction limit of the telescope. The speckle reconstructions account for the performance of the Adaptive Optics (AO) system at the DST to supply reliable photometry. We find a considerable discrepancy in the observed rms contrast of 14.1% for the best reconstructed images, and the synthetic rms contrast of 21.5% in a simulation snapshot thought to be representative of the quiet Sun. The areas of features in the synthetic filtergrams that have positive or negative contrast beyond the minimum and maximum values in the reconstructed images have spatial scales that should be resolved. This leads us to conclude that there are fundamental differences in the rms G-band contrast between observed and computed filtergrams. On the basis of the substantially reduced granular contrast of 16.3% in the synthetic plage filtergram we speculate that the quiet-Sun may contain more weak magnetic field than previously thought.Comment: 16 pages, 8 figure
    corecore